S'identifier

Every mathematical equation that connects separate distinct physical quantities must be dimensionally consistent, which implies it must abide by two rules. For this reason, the concept of dimension is crucial. The first rule is that an equation's expressions on either side of an equality must have the exact same dimension, i.e., quantities of the same dimension can be added or removed. The second rule stipulates that all popular mathematical functions, such as exponential, logarithmic, and trigonometric functions, must have dimensionless arguments in an equation.

It is dimensionally inconsistent for an equation to break either of these two rules, so an equation cannot be a representation of any physical law's accurate assertion. Dimensional analysis can help to remember the different laws of physics, check for algebraic errors or typos, and even speculate on the shape that future laws of physics might take.

The base quantities can be used to create any desired physical quantities. A quantity is stated as the product of various powers of the base quantities when it is expressed in terms of the base quantities. The dimension of the quantity in that base is the exponent of a base quantity that appears in the equation.

Consider the physical quantity force, which is defined as mass multiplied by acceleration. Acceleration is calculated as the change of velocity divided by a time interval, while the length divided by the time interval equals velocity. As a result, force has the following dimensions: one in mass, one in length, and minus two in time.

Tags
Dimensional AnalysisPhysical QuantitiesDimensionally ConsistentBase QuantitiesMathematical FunctionsAlgebraic ErrorsLaws Of PhysicsForceMassAccelerationVelocityDimensionless Arguments

Du chapitre 1:

article

Now Playing

1.13 : Problem Solving: Dimensional Analysis

Unités, dimensions et mesures

3.1K Vues

article

1.1 : L'étendue de la physique

Unités, dimensions et mesures

25.2K Vues

article

1.2 : Ordres de grandeur

Unités, dimensions et mesures

16.1K Vues

article

1.3 : Modèles, théories et lois

Unités, dimensions et mesures

4.9K Vues

article

1.4 : Unités et références de mesure

Unités, dimensions et mesures

30.3K Vues

article

1.5 : Estimation des grandeurs physiques

Unités, dimensions et mesures

4.0K Vues

article

1.6 : Unités de base et unités dérivées

Unités, dimensions et mesures

19.5K Vues

article

1.7 : Conversion des unités

Unités, dimensions et mesures

21.2K Vues

article

1.8 : Exactitude et précision

Unités, dimensions et mesures

8.5K Vues

article

1.9 : Erreurs systématiques et aléatoires

Unités, dimensions et mesures

10.6K Vues

article

1.10 : Les chiffres significatifs

Unités, dimensions et mesures

12.1K Vues

article

1.11 : Chiffres significatifs dans les calculs

Unités, dimensions et mesures

10.2K Vues

article

1.12 : Analyse dimensionnelle

Unités, dimensions et mesures

14.4K Vues

article

1.14 : Résoudre les problèmes de physique

Unités, dimensions et mesures

5.5K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.