When an object is acted upon by a variable force, the amount of work done and the change in energy of the object can be more complex to calculate compared to when a constant force is applied. Work is the product of force and displacement, while energy is the capacity of a system to do work. When a constant force is applied to an object, the work done can be calculated as the product of the force and the distance moved in the direction of the force. However, when a variable force is applied, the work done is the area under the force-displacement graph.

The change in energy of an object can also be more complex to calculate when a variable force is applied. In this case, the work-energy principle can be used. This principle states that the work done on an object is equal to its change in kinetic energy plus its change in potential energy. So, the total change in energy of an object can be calculated by adding its change in kinetic and potential energy.

When a variable force is applied to an object, the amount of work done and the change in energy of the object can be calculated using the concepts of calculus and the work-energy principle. Understanding these concepts is important in many fields, including physics and engineering, where the effects of variable forces on objects are often encountered.

The work-energy theorem, which states that the work done on an object is equal to its change in kinetic energy, holds true for varying forces. This means that whether a force is constant or varies over time, the work done on an object can be calculated by integrating the force over the distance traveled, and this work results in a change in the object's kinetic energy.

For example, if an object is pushed with a varying force, the total work done on the object can be found by integrating the force over the distance that the object is pushed. This work results in a change in the object's kinetic energy, which can be calculated using the work-energy theorem. So, the work-energy theorem is a powerful tool that can be used to analyze the motion of objects subject to various forces, including varying forces.

Tags
WorkEnergyVariable ForcesWork energy PrincipleKinetic EnergyPotential EnergyForce displacement GraphCalculusWork energy TheoremIntegrationPhysicsEngineering

Du chapitre 7:

article

Now Playing

7.9 : Work and Energy for Variable Forces

Travail d'une force et énergie cinétique

2.9K Vues

article

7.1 : Travail d'une force

Travail d'une force et énergie cinétique

13.1K Vues

article

7.2 : Travail positif, négatif et nul d'une force

Travail d'une force et énergie cinétique

10.5K Vues

article

7.3 : Énergie

Travail d'une force et énergie cinétique

11.0K Vues

article

7.4 : Types d'énergie potentielle

Travail d'une force et énergie cinétique

5.5K Vues

article

7.5 : Types d'énérgie cinétique

Travail d'une force et énergie cinétique

5.8K Vues

article

7.6 : Énergie cinétique - I

Travail d'une force et énergie cinétique

9.2K Vues

article

7.7 : Énergie cinétique - II

Travail d'une force et énergie cinétique

5.5K Vues

article

7.8 : Théorème de l'énergie cinétique

Travail d'une force et énergie cinétique

14.7K Vues

article

7.10 : Théorème de l’énergie de travail pour le mouvement le long d’une courbe

Travail d'une force et énergie cinétique

2.1K Vues

article

7.11 : Travail effectué sur un plan incliné

Travail d'une force et énergie cinétique

2.5K Vues

article

7.12 : Un travail accompli par de nombreuses forces

Travail d'une force et énergie cinétique

3.3K Vues

article

7.13 : Travail effectué par la gravité

Travail d'une force et énergie cinétique

5.6K Vues

article

7.14 : Puissance

Travail d'une force et énergie cinétique

10.2K Vues

article

7.15 : Puissance d'une force constante

Travail d'une force et énergie cinétique

6.6K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.