JoVE Logo

S'identifier

The gravitational potential energy between two spherically symmetric bodies can be calculated from the masses and the distance between the bodies, assuming that the center of mass is concentrated at the respective centers of the bodies.

Equation1

Consider that a spherically symmetric mass distribution comprises multiple concentric spherical shells. A point mass is placed at a distance 'r' from the center of mass of the spherical shell. All the particles in a given spherical ring on the surface of the shell are at equal distances from the point mass.

Equation1

The potential between the point mass and the ring can be obtained from the ring's mass. Integrating the expression for the potential energy between a point mass and a ring over the limits of distance gives the gravitational potential energy, which is the same as the potential energy between two point masses.

Equation2

If the point mass is inside the shell, then the limits of integration change. This shows that the potential energy does not depend on the distance and is the same everywhere for all points inside the shell. However, no work is done on the point mass if it is inside the shell.

Equation3

Tags

Gravitational Potential EnergySpherically Symmetric BodiesMass DistributionConcentric Spherical ShellsPoint MassDistanceGravitational PotentialIntegrationShell TheoremWork DoneGravitational Field

Du chapitre 14:

article

Now Playing

14.3 : Gravitation Between Spherically Symmetric Masses

Gravitation

810 Vues

article

14.1 : Gravitation

Gravitation

6.0K Vues

article

14.2 : La loi universelle de la gravitation

Gravitation

11.7K Vues

article

14.4 : Interaction gravitationnelle entre corps sphériques

Gravitation

8.1K Vues

article

14.5 : Coordonnées de masse réduites : problème à deux corps isolés

Gravitation

1.2K Vues

article

14.6 : La pesanteur terrestre

Gravitation

10.4K Vues

article

14.7 : La pesanteur sur d'autres planètes

Gravitation

4.0K Vues

article

14.8 : Rotation de la Terre et poids apparent

Gravitation

3.5K Vues

article

14.9 : Variation de la pesanteur près de la surface de la terre

Gravitation

2.3K Vues

article

14.10 : Énergie potentielle gravitationnelle

Gravitation

5.0K Vues

article

14.11 : Le principe de superposition et le champ gravitationnel

Gravitation

1.2K Vues

article

14.12 : Vitesse de libération

Gravitation

5.0K Vues

article

14.13 : Orbites circulaires et vitesse critique des satellites

Gravitation

2.8K Vues

article

14.14 : Énergie d'un satellite en orbite circulaire

Gravitation

2.1K Vues

article

14.15 : La première loi de Kepler sur le mouvement des planètes

Gravitation

3.8K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.