A slider-crank mechanism converts rotational motion from the crank into linear motion of the slider or vice versa. This mechanism consists of three main parts: the crank, the connecting rod, and the slider. The movement of the slider-crank is an example of general plane motion as the fluctuating angle between the crank and the connecting rod. Consider a segment AB where point A is at the end of the slider and point B is on the diametrically opposite end to point A, on a crack. The variance in motion of segment AB can be studied by assigning a stationary reference system at point O and an additional translating frame of reference at point A.

The absolute linear velocity at point B can be depicted as the sum of two vectors: the absolute linear velocity of point A and the relative velocity of point B when seen in relation to point A. When time derivatives are taken into account, the absolute acceleration of point B is obtained. This acceleration is effectively the vector sum of the absolute acceleration of point A and the relative acceleration of point B in relation to point A.

The path of point B's motion, when compared to point A, is circular. Consequently, the relative acceleration of point B is expressed in terms of its normal and tangential components. The movement of point B is a result of three factors - the linear acceleration of point A, the angular acceleration, and the angular acceleration of point B when compared to point A. Therefore, the motion in a slider-crank mechanism is a complex interplay of these factors, making it non-uniform.

Tags
Slider crank MechanismRotational MotionLinear MotionCrankConnecting RodSliderGeneral Plane MotionAbsolute Linear VelocityRelative VelocityAbsolute AccelerationVector SumCircular PathNormal ComponentTangential ComponentLinear AccelerationAngular Acceleration

Du chapitre 15:

article

Now Playing

15.7 : Relative Motion Analysis - Acceleration

Planar Kinematics of a Rigid Body

248 Vues

article

15.1 : Mouvement planaire d’un corps rigide

Planar Kinematics of a Rigid Body

258 Vues

article

15.2 : Mouvement de rotation autour d’un axe fixe

Planar Kinematics of a Rigid Body

224 Vues

article

15.3 : Équations cinématiques de la rotation

Planar Kinematics of a Rigid Body

208 Vues

article

15.4 : Analyse du mouvement absolu - Mouvement général du plan

Planar Kinematics of a Rigid Body

127 Vues

article

15.5 : Analyse du mouvement relatif - Vitesse

Planar Kinematics of a Rigid Body

257 Vues

article

15.6 : Centre instantané de vitesse nulle

Planar Kinematics of a Rigid Body

330 Vues

article

15.8 : Analyse du mouvement relatif à l’aide d’axes rotatifs

Planar Kinematics of a Rigid Body

333 Vues

article

15.9 : Analyse du mouvement relatif à l’aide d’axes de rotation - Accélération

Planar Kinematics of a Rigid Body

225 Vues

article

15.10 : Analyse du mouvement relatif à l’aide d’axes rotatifs - Résolution de problèmes

Planar Kinematics of a Rigid Body

276 Vues

article

15.11 : Équation du mouvement : rotation autour d’un axe fixe

Planar Kinematics of a Rigid Body

126 Vues

article

15.12 : Équation du mouvement : Mouvement général du plan

Planar Kinematics of a Rigid Body

150 Vues

article

15.13 : Équation du mouvement : mouvement général du plan - Résolution de problèmes

Planar Kinematics of a Rigid Body

89 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.