The carbonic acid-bicarbonate buffer system is critical for maintaining the body's pH balance. It operates on the equilibrium:


H2CO3 ⇋ H+ + HCO3-

In this system, bicarbonate ions (HCO3⁻) act as weak bases, and carbonic acid (H₂CO₃) serves as a weak acid. This dynamic equilibrium enables the system to respond effectively to changes in pH.

When hydrogen ion (H+) levels increase, causing a drop in pH, the equilibrium shifts to the left, converting hydrogen ions into carbonic acid. The enzyme carbonic anhydrase rapidly converts carbonic acid into carbon dioxide (CO2) and water, allowing CO2to be exhaled via the lungs. This mechanism helps lower H+levels and restore pH.

Conversely, when hydrogen ion levels decrease, resulting in a rise in pH, the equilibrium shifts to the right. Carbonic acid dissociates into H+and HCO3⁻, replenishing hydrogen ions and stabilizing pH. This balance ensures the body maintains a steady pH, which is vital for normal physiological function.

The effectiveness of the carbonic acid-bicarbonate buffer system depends on the availability of its buffering components. If a large acid load depletes bicarbonate ions (the "alkaline reserve"), the system's buffering capacity diminishes, leading to significant pH changes.

Although the body typically has ample bicarbonate reserves, the system's efficacy can be compromised in respiratory or metabolic dysfunction cases, where either CO₂ excretion or bicarbonate regulation is impaired.

The carbonic acid-bicarbonate buffer system plays a central role in maintaining acid-base homeostasis. By dynamically responding to changes in hydrogen ion concentrations, this system helps preserve the stability necessary for vital physiological processes.

Du chapitre 30:

article

Now Playing

30.15 : Bicarbonate-Carbonic Acid Buffer

Fluid, Electrolyte, and Acid-Base Balance

149 Vues

article

30.1 : Teneur en eau corporelle et compartiments liquidiens

Fluid, Electrolyte, and Acid-Base Balance

200 Vues

article

30.2 : Composition des fluides corporels

Fluid, Electrolyte, and Acid-Base Balance

152 Vues

article

30.3 : Mouvement fluide entre les compartiments

Fluid, Electrolyte, and Acid-Base Balance

168 Vues

article

30.4 : Régulation de la prise d’eau

Fluid, Electrolyte, and Acid-Base Balance

162 Vues

article

30.5 : Régulation du débit d’eau

Fluid, Electrolyte, and Acid-Base Balance

113 Vues

article

30.6 : Trouble de l’équilibre hydrique

Fluid, Electrolyte, and Acid-Base Balance

128 Vues

article

30.7 : Rôles des électrolytes : sodium et potassium

Fluid, Electrolyte, and Acid-Base Balance

53 Vues

article

30.8 : Rôles des électrolytes : chlorure et bicarbonate

Fluid, Electrolyte, and Acid-Base Balance

36 Vues

article

30.9 : Rôles des électrolytes : calcium et phosphate

Fluid, Electrolyte, and Acid-Base Balance

43 Vues

article

30.10 : Régulation du sodium et du potassium

Fluid, Electrolyte, and Acid-Base Balance

48 Vues

article

30.11 : Équilibre acido-basique

Fluid, Electrolyte, and Acid-Base Balance

117 Vues

article

30.12 : Systèmes tampons dans le corps

Fluid, Electrolyte, and Acid-Base Balance

165 Vues

article

30.13 : Tampons protéiques dans le plasma sanguin et les cellules

Fluid, Electrolyte, and Acid-Base Balance

143 Vues

article

30.14 : Tampon phosphate

Fluid, Electrolyte, and Acid-Base Balance

148 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.