Understanding steady, laminar flow between parallel plates is essential for analyzing and designing flow in narrow rectangular channels, commonly found in various water conveyance and drainage systems. The Navier-Stokes equations govern fluid motion and are generally challenging to solve due to their nonlinearity. However, simplifications are possible in certain cases, like the steady laminar flow between parallel plates. For this scenario, we assume steady, incompressible, laminar flow.

Considering two horizontal plates aligned along the x-axis and spaced a distance '2h' apart, with the y-axis perpendicular to the plates, fluid motion is assumed to be parallel. Here, the continuity equation indicates no change in velocity along the x-axis, and the Navier-Stokes equations reduce as follows:

Equation 1

The equations in the y and z directions show no pressure gradient along these axes, indicating that pressure varies hydrostatically in the y-direction, allowing integration to yield:

Equation 2

For parallel plates with a pressure gradient along the x-axis, the equation simplifies:

Equation 3

By integrating twice and applying boundary conditions (u = 0 at y = +h and y = -h), we obtain:

Equation 4

This expression reveals that the velocity profile across the gap between the plates is parabolic, with maximum velocity at y = 0, midway between the plates. The volumetric flow rate through a unit width of the plates is obtained by integrating the velocity profile across the gap.

Understanding laminar flow between parallel plates has practical applications in groundwater flow, wastewater treatment, and lubrication. For instance, this model can approximate flow in soil layers, where water moves between soil particles like flow between plates. Knowing the flow rate and velocity distribution helps engineers design efficient drainage systems and predict groundwater movement.

Du chapitre 19:

article

Now Playing

19.7 : Steady, Laminar Flow Between Parallel Plates

Differential Analysis of Fluid Flow

21 Vues

article

19.1 : Équations du mouvement d'Euler

Differential Analysis of Fluid Flow

23 Vues

article

19.2 : Fonction Stream

Differential Analysis of Fluid Flow

355 Vues

article

19.3 : Écoulement irrotationnel

Differential Analysis of Fluid Flow

21 Vues

article

19.4 : Potentiel de vitesse

Differential Analysis of Fluid Flow

10 Vues

article

19.5 : Écoulements de potentiel plan

Differential Analysis of Fluid Flow

29 Vues

article

19.6 : Équations de Navier-Stokes

Differential Analysis of Fluid Flow

42 Vues

article

19.8 : Couette Flow

Differential Analysis of Fluid Flow

21 Vues

article

19.9 : Écoulement laminaire régulier dans des tubes circulaires

Differential Analysis of Fluid Flow

13 Vues

article

19.10 : Exemple de conception : Écoulement de l’huile à travers des tuyaux circulaires

Differential Analysis of Fluid Flow

22 Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.