Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
Cette vidéo présente une méthode d'examen des modifications liées à l'âge en matière de connectivité fonctionnelle des réseaux de contrôle cognitif engagés par ciblés tâches / processus. La technique est basée sur l'analyse multivariée des données d'IRMf.
La possibilité de régler le comportement de brusques changements de l'environnement se développe progressivement dans l'enfance et l'adolescence. Par exemple, dans le changement de carte Trier tâche dimensionnelle, les participants passent de tri des cartes dans un sens, comme la forme, à les trier d'une manière différente, comme la couleur. Ajuster son comportement de cette manière exige un faible coût de la performance, ou le coût de commutation, de sorte que les réponses sont généralement plus lents et plus d'erreurs sur les essais de commutation dans lequel les changements de règles de tri par rapport à répéter les essais dans lesquels la règle de tri reste le même. La capacité de s'adapter facilement comportement est souvent dit de développer progressivement, en partie parce que les coûts de comportement tels que les coûts de commutation diminuent généralement avec l'âge. Pourquoi les aspects de la cognition d'ordre supérieur, tels que la flexibilité comportementale, afin de développer progressivement reste une question ouverte. Une hypothèse est que ces changements se produisent en association avec des changements fonctionnels dans les réseaux de contrôle cognitif à grande échelle. Sur cette vue,opérations mentales complexes, telles que la commutation, impliquent des interactions rapides entre plusieurs régions du cerveau distribués, y compris ceux que la mise à jour et de maintenir des règles de la tâche, l'attention réorienter et sélectionnez comportements. Avec le développement des connexions fonctionnelles entre ces régions renforcent, conduisant à des opérations de commutation plus rapide et efficace. La vidéo en cours décrit une méthode de tester cette hypothèse par la collecte et l'analyse multivariée des données IRMf des participants de différents âges.
La capacité à réguler le comportement se développe progressivement dans l'enfance et l'adolescence (pour revue, voir Diamond 1). Dans le changement de carte Trier tâche dimensionnelle, par exemple, les participants passent de tri des cartes dans un sens, comme la forme, à les trier d'une manière différente, comme la couleur 2 (voir la figure 2). Commutation exige un faible coût de la performance, ou le coût de commutation, de sorte que les réponses sont généralement plus lents et plus d'erreurs sur les essais de commutation dans lequel les changements de règles de tri par rapport à répéter les essais dans lesquels la règle de tri reste le même 3. L'ampleur de ces coûts obtient généralement plus petits que les enfants grandissent 4, illustrant le fait que la capacité de régulation du comportement subit poursuivi le développement des jeunes dans la vie.
Parce que les opérations mentales complexes, telles que la commutation, impliquent des interactions rapides entre plusieurs régions du cerveau 5, on s'intéresse de plus en relating le développement de la cognition d'ordre supérieur à l'évolution de l'organisation fonctionnelle des réseaux corticaux à grande échelle 6.
Une approche pour étudier les changements dans le développement des réseaux à grande échelle à travers l'utilisation de base de graines fonctionnelle analyse de la connectivité 6,7. La première étape de cette technique est de consulter les documents de recherche disponibles et de définir des régions a priori d'intérêt, ou ROI, qui semblent être pertinentes pour le comportement en question. Ces régions d'intérêt, ou noeuds, définissent le squelette de base du réseau. Ensuite, les fluctuations à basse fréquence de l'activité (ou T2 * pondérées intensité du signal) dans ces régions d'intérêt sont évalués pendant 5 à 10 min alors que les participants sont au repos dans un scanner IRM. Connectivité fonctionnelle entre deux noeuds du réseau est ensuite quantifié comme la corrélation de leurs cours à temps respectifs. Les nœuds qui sont fortement reliés fonctionnellement doivent avoir la même, et donc une forte corrélation, le signalcours du temps. D'autre part, les noeuds qui sont faiblement reliés fonctionnellement devraient avoir dissemblables et donc faiblement corrélés, le signal des plages de temps. Pour compléter un modèle du réseau, des bords (ou liens) sont établis entre les nœuds dont les cours de temps en corrélation supérieure à un seuil choisi. Tests des différences liées à l'âge en matière de connectivité fonctionnelle au sein d'un réseau peuvent être effectués sur une seule connexion de nœud à nœud, ou sur la topologie de l'ensemble des nœuds et des arêtes. Ces différences de connectivité fonctionnelle peuvent être liées à des mesures de la performance cognitive recueillies hors ligne.
Dans cet article, une approche différente est décrite qui est basé sur le groupe analyse en composantes indépendantes des données IRMf basées sur des tâches 8. Analyse en composantes indépendantes (ou ICA) est une méthode statistique pour révéler aveuglément sources cachées qui sous-tendent un ensemble d'observations telles que les sources révélées sont au maximum indépendant. Appliquée à l'analyse des données d'IRMf, le pROCEDURE suppose que chaque volume est un mélange d'un nombre fini de sources spatialement indépendantes. Utilisation de l'une d'une série de différents algorithmes, tels que l'algorithme de infomax, ICA estime ensuite une matrice de déconvolution, qui, lorsqu'il est appliqué aux données d'origine donne un ensemble de sources indépendantes au maximum, ou des composants. Chaque composant peut être considéré comme un réseau, dans la mesure où il comprend un ensemble de voxels qui partagent un décours temporel commun. Groupe ICA est un type particulier de l'ICA dans lequel un ensemble commun de composants de groupe est d'abord estimé à partir d'un ensemble de données complet, puis les ensembles de composants de groupe spécifique participants sont calculés en step back-reconstruction. Une fois qu'un ensemble de données entier est décomposé en un ensemble de composantes, l'étape suivante consiste à rejeter les composants des artéfacts qui représentent des sources de bruit, et d'identifier les composants qui correspondent théoriquement significatives avec les réseaux d'intérêt. Ceci peut être réalisé soit par des plages de temps de composantes de modélisation dans le contexte d'un GLM à identifier réseaux qui activent de manière prédite, en corrélation dans l'espace les composants avec un modèle d'un réseau d'intérêt, ou les deux. L'ensemble des composants qui en résulte peut ensuite être soumis à une comparaison avec un groupe pour tester les différences possibles liées à l'âge en matière de connectivité fonctionnelle au sein des réseaux théoriquement intéressantes 7,9,10.
Données IRMf basée sur les tâches étudier les changements liés à l'âge dans la connectivité fonctionnelle grâce à l'application de groupe ICA a plusieurs avantages sur l'application des techniques à base de graines de données IRMf étatiques repos. Tout d'abord, les techniques à base de graines-contrairement à ce que se concentrent sur un petit nombre d'a priori défini ROI, l'approche actuelle groupe ICA utilise tous les voxels comprenant une série de temps volumétrique. Cela diminue les possibilités de biais qui surviennent nécessairement quand un petit groupe de semences sont choisis a priori comme des régions d'intérêt. Deuxièmement, l'application de l'analyse de la connectivité fonctionnelle (ICA par le ou non) pour les tâchesplutôt que de l'état de repos données IRMf a l'avantage de permettre l'organisation du réseau et de réseau pour être plus directement associés. Si, par exemple, examiner les implications cognitives ou comportementales de la connectivité fonctionnelle (comme la variation de la performance DSRC) est une priorité, il est important de montrer que le réseau d'intérêt est associé à l'exécution des tâches. Avec les protocoles d'état de repos, ce qui est très difficile parce que le chercheur n'a aucune trace de tous les états cognitifs, comportementaux ou affectifs vécus par le participant lors de l'acquisition de données. Il est donc impossible de fournir une preuve directe que tout réseau d'intérêt est pertinent pour l'exécution des tâches. En revanche, lorsque l'analyse de la connectivité fonctionnelle, telle que ICA, est appliquée à des données sur les tâches, il est possible de confirmer que le réseau d'intérêt est au moins associé à l'exécution d'une mission. Enfin, l'ICA est moins sujet à l'influence néfaste du bruit. Les sources de bruit, comme ceux d'esprit associéeh mouvements du sujet et le rythme cardiaque, ont des profils spatio-temporels uniques. Par conséquent, dans le cadre d'un groupe d'ICA, ces sources sont isolées et caractérisées à composantes séparées, laissant les composants restants relativement exempt de ces sources indésirables de variance. Parce que les analyses fondées sur les semences-utilisent les cours à temps cru dans l'estimation de la connectivité fonctionnelle, et des cours de temps sont, par définition, des mélanges de signal neurophysiologique et le bruit des artefacts différences entre les groupes dans les estimations de connectivité fonctionnelle peuvent refléter de véritables différences entre les groupes dans la neurophysiologie sous-jacente, les différences de groupe dans la structure de bruit, ou les deux 11.
1. Obtenir l'approbation pour travailler avec des sujets humains
2. Acquisition de données IRMf
3. Groupe de l'analyse en composantes indépendantes (ICA)
ICA groupe, même sur un petit ensemble de données IRMf, sera de retour un ensemble de composants comparables à ceux observés dans d'autres études. Figure 4 est une superposition de 5 de ces composants et leurs cours à temps associés non mélangés à partir d'un échantillon de 12 enfants et 13 adultes , avec environ 800 volumes par participant. Comme le montre la figure 4, le mode par défaut, fronto-pariétale, les réseaux de cíngulo-insulaire et visuelle puissent fac...
Opérations mentales d'ordre supérieur, comme la possibilité de changer les règles de tri, se développent rapidement pendant l'enfance et l'adolescence. Parce que ces opérations mentales impliquent des interactions entre plusieurs régions du cerveau distribués, il ya un intérêt croissant dans l'exploration de la relation entre le développement de la cognition d'ordre supérieur et les changements liés à l'âge dans l'organisation des réseaux corticaux à grande échelle. Nous pr?...
Il n'y a pas d'intérêts financiers concurrents.
Cette recherche a été rendue possible grâce à l'appui de subventions du Conseil de recherches en sciences naturelles et génie (CRSNG) à J. Bruce Morton.
Name | Company | Catalog Number | Comments |
SPM8 | The MathWorks, Inc. | R2013a |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon