Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
Dans cet article, écoulement diélectrophorèse assistée est démontrée pour l’auto-assemblage de nanofils périphériques. La fabrication d’un transistor à effet de champ nanofils silicium est indiquée à titre d’exemple.
Diélectrophorèse flux-aidé (DEP) est un efficace auto-assemblage de méthode pour le contrôlable et reproductible positionnement, alignement et sélection de nanofils. DEP est utilisé pour des nanofils analyse, caractérisation et axée sur la solution de fabrication de dispositifs semi-conducteurs. La méthode fonctionne en appliquant un champ électrique alternatif entre les électrodes métalliques. La formulation de nanofils est ensuite déposée sur les électrodes qui sont sur une surface inclinée pour créer un flux de la formulation à l’aide de la gravité. Les nanofils puis alignent le long du gradient du champ électrique et dans le sens de l’écoulement du liquide. La fréquence du champ peut être ajustée pour sélectionner des nanofils à conductivité supérieure et plus faible densité de piège.
Dans cet ouvrage, DEP assistée par flux est utilisé pour créer des nanofils transistors à effet de champ. Flux-aidé DEP présente plusieurs avantages : il permet la sélection de nanofil propriétés électriques ; contrôle de nanofils longueur ; placement des nanofils dans des domaines spécifiques ; contrôle de l’orientation des nanofils ; et le contrôle de la densité des nanofils dans l’appareil.
La technique peut être étendue à beaucoup d’autres applications telles que les capteurs de gaz et micro-ondes commutateurs. La technique est efficace, rapide et reproductible, et il utilise une quantité minimale de solution diluée idéale pour l’essai de nouveaux nanomatériaux. Assemblée échelle Wafer de nanofils dispositifs peut également être obtenue en utilisant cette technique, permettant à un grand nombre d’échantillons pour les tests et applications électroniques de grande surface.
Assemblée contrôlable et reproductible de nanoparticules dans des endroits prédéfinis de substrat est l’un des principaux défis à la solution-process électroniques et photoniques dispositifs utilisant des nanoparticules semi-conductrices ou conductrices. Pour les appareils de haute performance, il est également très bénéfique pour pouvoir sélectionner des nanoparticules avec tailles préférentiels et des propriétés électroniques particulières, y compris, par exemple, conductivité élevée et faible densité d’États de surface piège. Malgré des progrès importants dans la croissance de nanomatériaux, y compris les matériaux de nanofils et nanotubes, quelques variations des propriétés des nanoparticules sont toujours présentes, et une étape de sélection peut améliorer considérablement la performance de l’appareil à base de nanoparticules1 ,2.
La méthode DEP flux-aidé a démontré dans ce travail vise à relever les défis ci-dessus en montrant contrôlables ensemble de nanofils semi-conducteurs sur contacts métalliques pour les transistors à effet de champ nanofil haute performance. DEP résout plusieurs problèmes de fabrication de dispositifs de nanofils en une seule étape, y compris le positionnement de nanofils, alignement et orientation des nanofils et sélection de nanofils avec propriétés souhaitées par la DEP signal fréquence sélection1. DEP a été utilisé pour nombreux autres appareils allant de gaz capteurs3, les transistors1, et4,5, matrices de commutation RF pour le positionnement des bactéries pour analyse7.
DEP est la manipulation des particules polarisables via l’application d’un champ électrique de non-uniforme résultant en nanofils auto-assemblage à travers les électrodes8. La méthode a été initialement développée pour la manipulation des bactéries9,10 , mais a depuis été étendue à la manipulation de nanofils et nanomatériaux.
Traitement solution DEP des nanoparticules permet la fabrication de dispositifs semi-conducteurs qui diffère sensiblement des techniques traditionnelles de descendante fondées sur plusieurs photomasking, implantation ionique, haute température14, recuit et gravure étapes. Étant donné que DEP manipule des nanoparticules qui ont déjà été synthétisés, c’est une technique de fabrication de basse température, de bas en haut11. Cette approche permet aux périphériques de nanofils à grande échelle être assemblés sur presque n’importe quel substrat dont les substrats plastiques sensibles à la température, flexible6,12,13.
Dans cet ouvrage, transistors à effet de champ haute performance p-type silicium nanofils sont fabriquées en utilisant des flux-aidé DEP et la caractérisation de courant-tension FET est menée. Les nanofils de silicium utilisées dans ce travail sont cultivées par les Super liquide liquide solide (PAFD) méthode15,16. Les nanofils sont dopés intentionnellement et sont environ 10 à 50 µm de longueur et 30-40 nm de diamètre. La méthode de croissance PAFD est extrêmement séduisante, puisqu’il peut offrir à l’industrie quantités évolutives de nanofils matériaux15. La méthodologie de l’Assemblée de nanofils proposée est directement applicable à d’autres matériaux de nanofils semi-conducteurs comme InAs13, SnO23et GaN18. La technique peut aussi être étendue pour aligner les nanofils conducteurs19 et positionner des nanoparticules sur électrode lacunes20.
Mise en garde : Toutes les procédures à moins qu’autrement indiqué avoir lieu dans une salle propre environnement et risques des évaluations ont été menées pour assurer la sécurité pendant les nanofils et manutention des produits chimiques. Nanomatériaux peut-être avoir un certain nombre de conséquences sur la santé qui sont comme des encore inconnue et sorte doivent être manipulées avec des soins21.
Remarque : Le processus commence par la préparation des substrats, suivie par les premiers pas de dépôts de photolithographie et métal pour définir les contacts de la DEP. Les nanofils sont ensuite assemblés par DEP et une étape plus facultatif dépôts photolithographique et métallique peut être réalisée pour déposer le haut de la page contacts sur nanofils. Les caractéristiques courant-tension de nanofils transistor devices sont mesurés puis à l’aide d’un kit de caractérisation des semi-conducteurs.
1. préparation des substrats
2. photolithographie bicouche processus pour les Contacts
Remarque : Un procédé de photolithographie bicouche est utilisé pour créer des électrodes. La photolithographie sont effectuées dans une chambre jaune pour prévenir la carie des matériaux de la résine photosensible.
3. dépôts de Contacts métalliques
NOTE : Le dépôt électronique faisceau (E-beam) est utilisé pour déposer des électrodes sur la résine photosensible préparée. Ce processus permet également des évaporateurs thermiques ou autres types de techniques de déposition de couches minces métalliques.
4. DEP de nanofils
5. le dépôt d’une couche métallique secondaire
6. j’ai-V caractérisation de dispositifs de nanofils
Remarque : Les échantillons sont maintenant terminés et peuvent être utilisés dans des expériences ultérieures ou leurs caractéristiques I-V peuvent être mesurées pour établir les propriétés électriques de nanofils FET. Les appareils fabriqués sont bloquées dos FETs, où wafer de silicium dopé sert de la grille commune et SiO2 couche sert le diélectrique de grille.
Résultats de photolithographie bicouche en propre définie nettement électrodes. Dans l’exemple (Figure 1 a), structure de doigt inter-digitated a été utilisé avec une longueur de chaîne de 10 µm. Ces structures permettent un grand espace assembler le nombre maximal de nanofils si on applique la force de la DEP. Figure 1 b montre une représentation schématique d’un dispositif de nanofils FET bas-porte.
La fabrication avec succès et les performances des dispositifs dépendant de plusieurs facteurs clés. Citons nanofil densité et la répartition dans la formulation, le choix du solvant, la fréquence des DEP et le contrôle du nombre de nanofils présents sur le dispositif d’électrodes1.
Une des étapes essentielles dans la réalisation de dispositifs de travail répétitif est la préparation d’une formulation de nanowire sans clusters ou en bouquets. La formul...
Les auteurs confirment qu’il n’y a aucun conflit d’intérêt.
Les auteurs aimeraient remercier ESPRC et BAE systems pour soutien financier et Prof. Brian A. Korgel et son groupe pour la fourniture de PAFD cultivé de nanofils de silicium utilisées dans ce travail.
Name | Company | Catalog Number | Comments |
Silicon/silicon dioxide wafer, CZ method growth, 100mm diameter, 300 nm oxide thermal growth, n-doped phosphorus | Si-Mat (Silicon materials) | - | http://si-mat.com/ |
Acetone (200ml) | Sigma Aldrich | W332615 | - |
Isopropanol (200ml) | Sigma Aldrich | W292907 | - |
Deionised water (150ml) | On site supply | - | - |
Photoresist (A) SF6 PMGI under etch photoresit (approx 1 ml per sample) | Microchem | - | http://microchem.com/pdf/PMGI-Resists-data-sheetV-rhcedit-102206.pdf |
Photoresist (B) S1805 photoresit) (approx 1 ml per sample) | Microchem | - | http://www.microchem.com/PDFs_Dow/S1800.pdf |
Photoresist developer Microposit MF319 (100ml) | Microchem | - | http://microchem.com/products/images/uploads/MF_319_Data_Sheet.pdf |
Photoresist remover Microposit remover 1165 (300ml (2 baths 150 each)) | Microchem | - | http://micromaterialstech.com/wp-content/dow_electronic_materials/datasheets/1165_Remover.pdf |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon