Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Method Article
Une méthode est présentée pour construire un laser à fibres femtosecondes à faible coût et verrouillé par mode pour des applications potentielles en microscopie multiphoton, endoscopie et photomédecine. Ce laser est construit en utilisant des pièces disponibles dans le commerce et des techniques d'épissage de base.
Un protocole est présenté pour construire un laser à fibres femtoseconde (fs) personnalisé saille à faible coût et haute performance. Ce laser à fibres entièrement normal (ANDi) dopé à l'ytterbium est entièrement construit à l'aide de pièces disponibles dans le commerce, y compris 8 000 $ en composants laser à fibres optiques et à pompe, plus 4 800 $ en composants optiques standard et accessoires extra-cavité. Les chercheurs nouveaux à la fabrication de dispositif de fibre optique peuvent également envisager d'investir dans l'épissage de fibre de base et l'équipement de caractérisation d'impulsion de laser ($63.000). Important pour le fonctionnement optimal du laser, des méthodes pour vérifier les performances de mode de type réel (partielle ou sonore) sont présentées. Ce système atteint une durée d'impulsion de 70 fs avec une longueur d'onde centrale d'environ 1 070 nm et un taux de répétition d'impulsions de 31 MHz. Ce laser de fibre montre les performances maximales qui peuvent être obtenues pour un système laser de fibre facilement assemblé, qui rend cette conception idéale pour des laboratoires de recherche visant à développer des technologies laser compactes et portables de fs qui permettent de nouvelles implémentations de microscopie multiphoton clinique et chirurgie fs.
Les lasers pulsés à l'état solide de femtoseconde (fs) sont largement utilisés pour la microscopie et la recherche biologique. Un exemple typique est l'utilisation de la microscopie à fluorescence par excitation multiphoton (MPE), où une puissance de pointe élevée et une faible puissance moyenne sont souhaitées pour faciliter le processus MPE tout en minimisant les mécanismes de photodommage. De nombreux lasers à état solide haute performance sont disponibles dans le commerce, et lorsqu'ils sont combinés avec un oscillateur paramétrique optique (OPO), la longueur d'onde laser peut être réglé sur une large gamme1. Par exemple, les systèmes d'oscillation commerciale-OPO génèrent des durées d'impulsions de lt;120 fs (généralement avec un taux de répétition d'impulsions de 80 MHz) et une puissance moyenne de 680 à 1 300 nm. Cependant, le coût de ces systèmes laser tunables commerciaux est important (200 000 $), et les systèmes à état solide nécessitent généralement un refroidissement de l'eau et ne sont pas portatifs pour des applications cliniques.
La technologie laser à fibres pulsées ultracourtes a mûri au cours des dernières années. Le coût d'un laser commercial de fibre pulsée de fs est typiquement sensiblement inférieur aux lasers à état plein, quoique sans la capacité de l'accord de longueur d'onde large offerte par les systèmes à état solide mentionnés ci-dessus. Notez que les lasers à fibres peuvent être jumelés à des OPO lorsque vous le souhaitez (c.-à-d., systèmes hybrides à fibres solides). Le grand rapport surface-volume des systèmes laser à fibres permet un refroidissement efficace de l'air2. Par conséquent, les lasers à fibres sont plus portables que les systèmes à état solide en raison de leur taille relativement petite et système de refroidissement simplifié. En outre, l'épissage de fusion des composants de fibre réduit la complexité du système et la dérive mécanique contrairement à l'alignement de l'espace libre des composants optiques qui composent les dispositifs à état solide. Toutes ces caractéristiques font des lasers de fibre idéaux pour des applications cliniques. En fait, les lasers tout-fibre ont été développés pour l'opération de bas-entretien3,4,5, et tous les lasers de polarisation-maintien (PM)-fibre sont stables aux facteurs environnementaux comprenant des changements dans la température et l'humidité aussi bien que les vibrations mécaniques2,6,7,8.
Ici, une méthode est présentée pour construire un laser à fibres ANDi pulsés fs rentable avec des pièces disponibles dans le commerce et des techniques standard d'épissage de fibres. Des méthodes pour caractériser le taux de répétition des impulsions, la durée et la cohérence (verrouillage en mode complet) sont également présentées. Le laser à fibres qui en résulte génère des impulsions verrouillées par le mode qui peuvent être comprimées à 70 fs avec un taux de répétition de 31 MHz et une longueur d'onde centrée sur 1 060 à 1 070 nm. La puissance maximale de sortie de la cavité laser est d'environ 1 W. La physique des impulsions des lasers à fibres ANDi utilise élégamment l'évolution de polarisation non linéaire intrinsèque à la fibre optique comme composant clé de l'absorbeur saturable2,3,9,10,11. Cependant, cela signifie que la conception ANDi n'est pas facilement mis en œuvre en utilisant la fibre PM (bien qu'une implémentation de fibre tout-PM de verrouillage du mode ANDi a été signalé, mais avec une faible puissance et ps durée d'impulsion12). Ainsi, la stabilité environnementale nécessite une ingénierie importante. Les conceptions laser de fibre de prochaine génération, telles que l'oscillateur de Mamyshev, ont le potentiel d'offrir la stabilité environnementale complète en tant que dispositifs tout-PM-fibre capable d'une augmentation de l'ordre de grandeur de l'énergie d'impulsion intracavité aussi bien qu'offrant des diminutions significatives dans la durée d'impulsion pour permettre des applications qui s'appuient sur de larges spectres d'impulsion13,14. La fabrication personnalisée de ces nouvelles conceptions innovantes de laser de fibre de fs exige le savoir-faire et l'expérience d'épissage de fibre.
Access restricted. Please log in or start a trial to view this content.
1. Fibres de mode unique d'épissure (SMF)
REMARQUE : La section 1 consiste en des étapes générales pour épissage des FSM. Il s'agit d'une étape non essentielle, mais recommandée, pour pratiquer des épissures de fibres en utilisant des fibres bon marché. Cette étape assure une bonne performance de l'équipement d'épissage avant d'utiliser des matériaux à fibres optiques plus précieux.
2. Assembler les pièces de fibre
3. Montez les pièces de fibre à la table optique
4. Assembler les pièces d'espace libre
5. Configurer des composants extra-cavité
6. Atteindre des performances verrouillées par le mode avec la caractérisation de la sortie d'impulsion laser
Access restricted. Please log in or start a trial to view this content.
Il est essentiel de vérifier le fonctionnement verrouillé par mode à l'achèvement des procédures de fabrication de laser de fibre. Les signatures de la génération optimale d'impulsions fs et de la stabilité laser sont les suivantes : Premièrement, l'impulsion de sortie peut être suffisamment caractérisée par l'instrumentation décrite à l'étape 6. La sortie du spectre d'impulsionde de l'oscillateur laser doit être centrée près de 1 070 nm avec la forme caractéristique de...
Access restricted. Please log in or start a trial to view this content.
Les protocoles décrits ici synthétisent le savoir-faire et l'expertise qui ont été la pratique courante dans le laboratoire de physique laser pendant des décennies, mais qui est souvent inconnu de nombreux chercheurs biomédicaux. Ce travail tente de rendre cette technologie laser à fibre ultrarapide plus accessible à l'ensemble de la communauté. La conception laser en fibre ANDi est bien établie, comme d'abord développé dans les œuvres séminales par Wise et collègues3. Cependant, la...
Access restricted. Please log in or start a trial to view this content.
Les auteurs ne déclarent aucun intérêt concurrent.
Nous remercions les Drs E. Cronin-Furman et M. Weitzman (Olympus Corporation of the Americas Scientific Solutions Group) pour leur aide dans l'acquisition d'images. Ce travail a été soutenu par national Institutes of Health Grant K22CA181611 (à B.Q.S.) et la Richard and Susan Smith Family Foundation (Newton, M.A.) Prix de la famille Smith pour l'excellence en recherche biomédicale (à B.Q.S.).
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Adapters, mirrors, posts, mounts, and translational stage (optomechanics) | Thorlabs | TR6-P5 (3x), AD12NT (2x), PFSQ20-03-M01, PFSQ05-03-M01, KMS, KM100C, KM100CL, KM200S, LT1, LT101, UPH2-P5, UPH3-P5 (2x) | Standard optical components |
Advanced optical fiber cleaver | AFL | CT-100 | |
Autocorrelator | Femtochrome | FR-103XL/IR/FA/CDA | |
Beamsplitter mount | Thorlabs | BSH1/M | |
Factory fusion splicer | AFL | FSM-100P | |
Fiber collimators | OZ Optics (Canada) | LPC-08-1064-6/125-S-1.6-7.5AS-60-X-1-2-HPC | 3x |
Fiber-coupled,high-speed photodiode detector | Thorlabs | DET08CFC | |
Free-space isolator | Thorlabs | IO-5-1050-HP | |
Free-space isolator | Thorlabs | IO-3D-1050-VLP | |
Half waveplate | Union Optics (China) | WPZ2312 | 2x |
High power multimode fiber pump module | Gauss Lasers (China) | Pump-MM-976-10 | |
High power pump and signal combiner | ITF Technology (Canada) | MMC02112DF1 | |
Index matching gel | Thorlabs | G608N3 | |
Optical spectrum analyzer | Keysight | Agilent 70951B | |
Oscilloscope | Keysight | Agilent 54845A | |
Passive double clad fiber(5/130 μm) | ITF Technology (Canada) | MMC02112DF1 | 3m, Included with combiner |
Polarizing beamsplitter | Thorlabs | PBS253 | |
Quarter waveplates | Union Optics (China) | WPZ4312 | 2x |
Quartz birefringent filter plate | Newlight (Canada) | BIR1060 | |
RF spectrum analyzer | Tektronix | RSA306B | |
Single mode fiber (6/125 μm) | OZ Optics (Canada) | LPC-08-1064-6/125-S-1.6-7.5AS-60-X-1-2-HPC | 1m, Included with collimators |
Single mode fiber coupler | AFW (Australia) | FOSC-2-64-30-L-1-H64-2 | |
Transmission diffraction grating 1 | LightSmyth | T-1000-1040-3212-94 | For compressor |
Transmission diffraction grating 2 | LightSmyth | T-1000-1040-60x12.3-94 | For compressor |
Waveplate rotation mount | Thorlabs | RSP1/M | 4x |
Ytterbium-doped single mode double clad fiber | Thorlabs | YB1200-6/125DC | 3m |
Access restricted. Please log in or start a trial to view this content.
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationThis article has been published
Video Coming Soon