Un abonnement à JoVE est nécessaire pour voir ce contenu. Connectez-vous ou commencez votre essai gratuit.
Le protocole montre un prototype de la plate-forme de collecte de données multimodale à domicile qui soutient la recherche sur l’optimisation de la stimulation cérébrale profonde adaptative (aDBS) pour les personnes atteintes de troubles neurologiques du mouvement. Nous présentons également les principales conclusions du déploiement de la plateforme depuis plus d’un an au domicile d’une personne atteinte de la maladie de Parkinson.
La stimulation cérébrale profonde adaptative (SCP) est prometteuse pour améliorer le traitement des troubles neurologiques tels que la maladie de Parkinson (MP). La SCP utilise des biomarqueurs liés aux symptômes pour ajuster les paramètres de stimulation en temps réel afin de cibler les symptômes avec plus de précision. Pour permettre ces ajustements dynamiques, les paramètres d’un algorithme aDBS doivent être déterminés pour chaque patient. Cela nécessite un réglage manuel fastidieux de la part des chercheurs cliniques, ce qui rend difficile la recherche d’une configuration optimale pour un seul patient ou l’adaptation à de nombreux patients. De plus, l’efficacité à long terme des algorithmes de SCP configurés en clinique pendant que le patient est à domicile reste une question ouverte. Pour mettre en œuvre cette thérapie à grande échelle, une méthodologie permettant de configurer automatiquement les paramètres de l’algorithme aDBS tout en surveillant à distance les résultats de la thérapie est nécessaire. Dans cet article, nous partageons la conception d’une plate-forme de collecte de données à domicile pour aider le terrain à résoudre ces deux problèmes. La plate-forme est composée d’un écosystème matériel et logiciel intégré qui est open-source et permet la collecte à domicile de données vidéo neuronales, inertielles et multi-caméras. Pour garantir la confidentialité des données d’identification des patients, la plateforme crypte et transfère les données via un réseau privé virtuel. Les méthodes comprennent l’alignement temporel des flux de données et l’extraction d’estimations de pose à partir d’enregistrements vidéo. Pour démontrer l’utilisation de ce système, nous avons déployé cette plateforme au domicile d’une personne atteinte de la maladie de Parkinson et recueilli des données au cours de tâches cliniques autoguidées et de périodes de comportement libre sur une période d’un an et demi. Les données ont été enregistrées à des amplitudes de stimulation sous-thérapeutique, thérapeutique et supra-thérapeutique afin d’évaluer la sévérité des symptômes moteurs dans différentes conditions thérapeutiques. Ces données alignées dans le temps montrent que la plateforme est capable de collecter des données multimodales synchronisées à domicile pour l’évaluation thérapeutique. Cette architecture de système peut être utilisée pour soutenir la recherche automatisée sur la SCP, pour recueillir de nouveaux ensembles de données et pour étudier les effets à long terme de la thérapie par SCP en dehors de la clinique pour les personnes souffrant de troubles neurologiques.
La stimulation cérébrale profonde (SCP) traite les troubles neurologiques tels que la maladie de Parkinson (MP) en délivrant un courant électrique directement à des régions spécifiques du cerveau. On estime à 8,5 millions le nombre de cas de maladie de Parkinson dans le monde, et la SCP s’est avérée être un traitement essentiel lorsque les médicaments sont insuffisants pour gérer les symptômes 1,2. Cependant, l’efficacité de la SCP peut être limitée par des effets secondaires qui surviennent parfois lors d’une stimulation conventionnelle délivrée à une amplitude, une fréquence et une largeur d’impulsion fixes<....
Les patients sont recrutés dans le cadre d’une étude plus vaste approuvée par l’IRB et l’IDE sur l’aDBS à l’Université de Californie à San Francisco, protocole # G1800975. Le patient inscrit à cette étude a également donné son consentement éclairé spécifiquement pour cette étude.
1. Composants du système domestique
Conception et déploiement d’une plate-forme prototype
Nous avons conçu une plateforme prototype et l’avons déployée au domicile d’un seul patient (Figure 1). Après la première installation du matériel dans la maison, la plate-forme peut être maintenue et les données collectées entièrement via un accès à distance. Les appareils, les montres intelligentes et les caméras de l’INS disposent d’applications destinées aux patients qui leur permettent de .......
Nous partageons la conception d’un prototype à domicile d’une plateforme de collecte de données multimodale pour soutenir les recherches futures en neuromodulation. La conception est open-source et modulaire, de sorte que n’importe quelle pièce de matériel peut être remplacée et que n’importe quel composant logiciel peut être mis à jour ou modifié sans que l’ensemble de la plate-forme ne s’effondre. Bien que les méthodes de collecte et d’anonymisation des données neuronales soient spécifiques à.......
Les auteurs n’ont aucun conflit d’intérêts à divulguer.
Ce matériel est basé sur des travaux soutenus par le programme de bourses de recherche d’études supérieures de la National Science Foundation (DGE-2140004), le Weill Neurohub et le National Institute of Health (UH3NS100544). Toutes les opinions, constatations et conclusions ou recommandations exprimées dans ce document sont celles de l’auteur ou des auteurs et ne reflètent pas nécessairement les points de vue de la National Science Foundation, du Weill Neurohub ou du National Institute of Health. Nous remercions Tianjiao Zhang pour ses conseils d’expert sur la conception de plateformes et l’intégration de données vidéo. Nous remercions tout particulièrement le patient....
Name | Company | Catalog Number | Comments |
Analysis RCS Data Processing | OpenMind | https://github.com/openmind-consortium/Analysis-rcs-data, open-source | |
Apple Watches | Apple, Inc | Use 2 watches for each patient, one on each wrist | |
BRIO ULTRA HD PRO BUSINESS WEBCAM | Logitech | 960-001105 | Used 3 in our platform design |
DaVinci Resolve video editing software | DaVinci Resolve | used to support camera calibration | |
Dell XPS PC | Dell | 2T hard disk drive, 500GB SSD | |
Dropbox | Dropbox | ||
ffmpeg | N/A | open-source, install to run the Video Recording App | |
Gooseneck mounts for webcams | N/A | ||
GPU | Nvidia | A minimum of 8GB GPU memory is recommended to run OpenPose, 12GB is ideal | |
Java 11 | Oracle | Install to run the Video Recording App | |
Microsoft Surface tablet | Microsoft | ||
NoMachine | NoMachine | Ideal when using a Linux OS, open-source | |
OpenPose | N/A | open-source | |
Rclone file transfer program | Rclone | Encrypts data and copies or moves data to offsite storage, open-source | |
StrivePD app | RuneLabs | We installed the app on the Apple Watches to start recordings and upload data to an online portal. | |
Summit RC+S neuromodulation system | Medtronic | For investigational use only | |
touchscreen-compatible monitor | N/A | ||
Video for Linux 2 API | The Linux Kernel | Install if using a Linux OS for video recording | |
Wasabi | Wasabi | Longterm cloud data storage | |
WireGuard VPN Protocol | WireGuard | open-source |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationExplorer plus d’articles
This article has been published
Video Coming Soon