* Ces auteurs ont contribué à parts égales
Les échelles de douleur actuelles utilisées pour quantifier la gravité de la douleur, telles que les échelles visuelles analogiques, ne parviennent pas à saisir la complexité des expériences subjectives de la douleur. Les diagrammes corporels de la douleur sont qualitatifs mais peuvent être plus informatifs. L’objectif de cette méthode est d’extraire des mesures quantitatives à partir de diagrammes corporels de douleur à l’aide d’une nouvelle transformation pression-teinte.
Pour quantifier la gravité subjective de la douleur d’une personne, des échelles normalisées d’évaluation de la douleur telles que l’échelle d’évaluation numérique (NRS), l’échelle visuelle analogique (EVA) ou le questionnaire sur la douleur de McGill (MPQ) sont couramment utilisées pour évaluer la douleur sur une échelle numérique. Cependant, ces échelles sont souvent biaisées et ne parviennent pas à saisir la complexité des expériences douloureuses. En revanche, la pratique clinique exige souvent des patients qu’ils signalent les zones douloureuses en s’appuyant sur un schéma corporel, qui est un outil efficace mais qualitatif. La méthode présentée ici extrait des mesures quantifiables à partir de diagrammes de corps de douleur (PBD) qui sont validés par rapport aux échelles de douleur NRS, VAS et MPQ. En utilisant une nouvelle transformation pression-teinte sur une tablette numérique, différentes pressions de dessin appliquées avec un stylet numérique peuvent être représentées sous forme de teintes différentes sur un PBD. Cela produit un diagramme visuellement intuitif de teintes allant du vert au bleu en passant par le rouge, représentant respectivement les régions les plus douces à modérées à les plus douloureuses. Pour quantifier chaque PBD, de nouvelles mesures de douleur ont été définies : (1) l’intensité moyenne du PBD, qui est égale à la somme de la valeur de teinte de chaque pixel divisée par le nombre de pixels colorés, (2) la couverture PBD, qui est égale au nombre de pixels colorés divisé par le nombre total de pixels sur le corps, et (3) l’intensité de la somme PBD, qui est égale à la somme des valeurs de teinte de tous les pixels. À l’aide d’analyses de corrélation et de théorie de l’information, il a été démontré que ces mesures PBD avaient une concordance élevée avec les mesures standardisées de la douleur, y compris NRS, VAS et MPQ. En conclusion, les PBD peuvent fournir de nouvelles informations spatiales et quantitatives qui peuvent être mesurées et suivies à plusieurs reprises au fil du temps pour caractériser de manière exhaustive l’expérience de la douleur d’un participant.
La douleur chronique est une affection neuropsychiatrique débilitante qui touche plus de 50 millions d’adultesaux États-Unis. Cependant, les outils cliniques courants pour suivre l’intensité subjective de la douleur (tels que l’échelle d’évaluation numérique [NRS] ou l’échelle visuelle analogique [EVA]) sont réductionnistes et ne parviennent pas à communiquer la nature complexe de l’intensité des symptômes de la douleur couvrant les domaines somatosensoriels, cognitifs ou affectifs 2,3. Le suivi précis de l’intensité de la douleur d’une personne est essentiel au diagnostic des syndromes douloureux, à la surveillance de la progression de la maladie et à l’évaluation de l’efficacité potentielle de thérapies telles que les médicaments ou la stimulation cérébrale.
L’outil d’intensité de la douleur NRS, largement utilisé, exige que le sujet évalue l’intensité de la douleur sous la forme d’une valeur entière comprise entre 0 et 10, ce qui représente l’absence de douleur jusqu’à la pire douleur possible. Bien qu’il soit facile à administrer et à comprendre, le SNR est limité par le biais d’ancrage des répondants, le biais d’attente et l’interprétation variable des valeurs individuelles 4,5 ; Ceux-ci limitent également les comparaisons entre les participants. Le SVA, une échelle continue de 0 à 100, peut réduire l’impact de l’ancrage, mais peut encore faire face à des limites similaires à celles du SNR4. Plusieurs études ont démontré un degré élevé de concordance entre le NRS et l’EVA pour la lombalgie chronique de gravité6,7 et la pratique clinique5, mais les lignes directrices consensuelles soulignent les nombreuses lacunes de l’utilisation d’échelles similaires dans la conception ou l’interprétation des essais cliniques sur la douleur 8,9. Le questionnaire abrégé sur la douleur 2 (MPQ) de McGill dissèque plus en détail les dimensions somatosensorielles et affectives de la douleur à l’aide de l’évaluation des descripteurs verbaux10, afin d’aider à faire la distinction entre la dimension sensorielle et affective de la douleur11. Bien que ces échelles d’évaluation de la douleur soient couramment utilisées pour suivre l’intensité de la douleur12,13, elles ne parviennent pas à saisir des informations topographiques détaillées telles que l’emplacement de la douleur ou la variation de l’intensité entre les régions du corps.
Les diagrammes corporels de la douleur (PBD) sont un outil d’évaluation de la douleur ouvert et de forme libre qui permet aux répondants d’illustrer une représentation visuelle de l’emplacement et de l’intensité de la douleur sur un plan schématique du corps humain14,15. Les PBD sont un outil de communication efficace entre les participants et les fournisseurs de soins de santé qui aide à suivre longitudinalement les symptômes de la douleur16. Le format graphique libre de PBD peut réduire le biais d’ancrage. Les modifications récentes apportées aux PBD, telles que l’introduction de diagrammes corporels spécifiques au sexe, ont accru leur efficacité en tant qu’outil de communication en alignant la forme corporelle représentée visuellement avec l’anatomie du répondant, augmentant ainsi l’auto-identification et la précision des réponses17. De plus, il a été démontré que l’utilisation de la couleur pour signifier l’intensité permet une communication efficace des symptômes de la douleur en surmontant les barrières culturelles et linguistiques. Par exemple, les couleurs blanc et rouge ont été le plus souvent choisies pour indiquer l’absence de douleur et la douleur intense, respectivement, dans une population de patients Hmong18. Bien que les PBD soient un outil efficace19,20, ils ont été limités par leur nature qualitative.
L’utilisation des PBD sur les tablettes numériques a considérablement élargi les outils disponibles pour quantifier la localisation et l’intensité de la douleur. Barbero et al. ont quantifié l’étendue de la douleur ou le nombre de pixels dessinés dans un PBD de patients souffrant de douleurs chroniques au bas du dos et au cou et ont montré une bonne fiabilité test-retest et une corrélation significative avec les mesures VAS21. Des diagrammes corporels ont également été analysés pour créer des cartes de fréquence de la douleur afin de montrer les zones du corps les plus douloureuses aux moins fréquemment21,22. Bien que ces méthodes quantifient les informations spatiales sur la douleur, jusqu’à présent, aucune méthode n’a incorporé à la fois l’intensité et la localisation de la douleur dans des mesures composites.
Le protocole suivant démontre une méthode permettant d’obtenir de nouveaux PBD colorés visuellement intuitifs et d’extraire trois mesures quantitatives qui, ensemble, reflètent un composite d’informations sur l’intensité de la douleur et la localisation. Pour ce faire, cinq participants participant à un essai de recherche sur la stimulation cérébrale profonde (SCP) pour la douleur neuropathique chronique réfractaire ont été sélectionnés pour tester l’approche actuelle, en utilisant un plan d’étude N-of-123. Les participants ont été invités à signaler l’intensité de leurs symptômes de douleur momentanés en appliquant différents niveaux de pression sur le stylo sur une application d’illustration de tablette pour produire des teintes de couleur correspondant à des intensités de douleur variables à différents endroits du corps. Les mesures de couverture, d’intensité totale et d’intensité moyenne dérivées du PBD ont été comparées à des mesures de la douleur validées plus courantes (c.-à-d. NRS, VAS et MPQ) à l’aide d’analyses statistiques et d’informations mutuelles (IM).
Au cours d’un séjour hospitalier de 10 jours, les patients évalués ont complété des PBD (moyenne ±écart-type (ET) = 121,8 ± 34,3 PBD par patient ; intervalle de 84 à 177 ; 609 PBD au total) en plus des échelles de douleur validées telles que le NRS, l’EVA et le MPQ plusieurs fois par jour. Les PBD ont été recueillis à l’aide d’une application pour tablette et téléchargés sous forme de fichiers horodatés sur des serveurs de recherche sécurisés une fois terminés. L’intensité de la douleur NRS, VAS et MPQ ont été acquises à l’aide des outils d’enquête REDCap, une application Web sécurisée. Les sondages et les PBD ont été administrés en personne par des assistants de recherche afin de s’assurer que les patients recevaient l’aide nécessaire pour effectuer leurs évaluations avec précision. Les étapes suivantes détaillent la configuration du PBD, l’instruction des participants, la collecte de données et l’analyse PBD utilisées pour quantifier de manière fiable la douleur (Figure 1).
Ce protocole PBD a été mis en œuvre dans le cadre d’un protocole d’essai clinique parent (NCT03029884), approuvé par le programme de protection de la recherche humaine de l’UCSF et la FDA. Chaque participant (3 femmes et 2 hommes, tranche d’âge : 51-67 ans) a signé un consentement éclairé écrit ; ils ont été recrutés au centre de gestion de la douleur de l’UCSF ou référés par des médecins aux États-Unis.
1. Configuration du diagramme corporel de la douleur
2. Consignes pour les participants
3. Collecte et prétraitement des données
4. Quantification du PBD
La moyenne, la somme et la couverture PBD fournissent de manière unique des informations sur les réponses à la douleur qui ne sont pas prises en compte dans d’autres échelles standardisées de la douleur. Entre les deux PBD (Figure 2A,B), l’intensité moyenne de la douleur est identique (moyenne PBD = 79,6). Cependant, une couverture et une somme accrues révèlent une plus grande répartition spatiale de la douleur et de l’intensité totale de la douleur, respectivement, qui différencient les deux PBD (Figure 2B). Pour quantifier avec précision la douleur à l’aide de ces mesures, les chercheurs doivent éviter les erreurs courantes suivantes de configuration du PBD (Figure 2C). L’épaisseur excessivement importante du stylo et les éléments superflus à l’extérieur du contour du corps, tels que les régions du corps qui tournent en rond ou les descripteurs écrits, ne seront pas pris en compte dans le traitement PBD. De même, un stylo blanc utilisé pour supprimer la couleur plutôt que l’outil gomme faussera les mesures PBD. La pratique et l’enseignement renforcé permettront aux patients de créer des PBD précis et quantifiables qui révèlent la variabilité de l’intensité et de la distribution de la douleur.
Les paramètres PBD ont été validés par rapport à l’ENR, à l’EVA et à la QPM (figure 3B ; Figure supplémentaire 2) et a obtenu un score élevé en termes de facilité d’utilisation (figure supplémentaire 1 et figure supplémentaire 2).
Mesures PBD corrélées aux mesures standard de la douleur
Les paramètres PBD ont été corrélés avec le NRS, l’EVA et le MPQ pour la plupart des patients (Figure 3A, Figure supplémentaire 1A,B). Chez quatre patients sur cinq, la somme, la couverture et la moyenne de PBD étaient corrélées à leur SVA et à leur SNR (corrélation de Spearman, rs = 0,33-0,72, p < 0,004, tableau supplémentaire 1). Pour trois participants sur cinq, les mesures PBD étaient également significativement corrélées avec les scores MPQ (corrélation de Spearman, rs = 0,38-0,53, p < 0,004, tableau supplémentaire 1). Cependant, le patient 4 n’a pas montré de corrélations significatives entre les mesures PBD et les scores de douleur standard. Nous avons également caractérisé les relations non linéaires entre le PBD et les métriques standard à l’aide d’analyses de la théorie de l’information (Figure supplémentaire 2).
Les mesures PBD évitent l’ancrage de la réponse et partagent des informations mutuelles avec les mesures de douleur standard
Les mesures PBD contenaient plus d’informations (c’est-à-dire l’entropie) que le NRS. Chez les patients, le NRS contenait moins d’informations (2,32 ± 0,37 bits) par rapport à l’intensité de l’AVAS, à l’inconvénient de l’AVS, au total de l’EVA, à la somme de la PBD, à la couverture de la PBD et à la moyenne de la PBD (3,21 ± 0,49 bits, 3,20 ± 0,31 bits, 3,16 ± 0,23 bits, 3,06 ± 0,32 bits, 3,34 ± 0,16 bits, 3,22 ± 0,39 bits, respectivement ; Figure supplémentaire 2). Cela a été confirmé par une ANOVA à mesures répétées à un facteur (F(4,1) = 12,10, p < 0,05) et un test t de Tukey pour les comparaisons individuelles ( p < 0,05). Cela montre que les métriques PBD avaient moins d’ancrage de réponse que le NRS.
Le PBD a ensuite été validé par rapport à des paramètres établis par des analyses d’informations mutuelles (tests de permutation, α = 0,05). Chez quatre patients sur cinq, les mesures PBD partageaient significativement l’IM avec le NRS, l’intensité de l’AVS, le désagrément de l’EVA et le MPQ (p < 0,05, Figure 3B). En revanche, les mesures PBD du patient 4 ne partageaient pas significativement l’IM avec les mesures établies. Étant donné que leur SNR contenait le moins d’informations sur les patients (figure supplémentaire 2), cela suggère que le SNR n’a pas réussi à saisir les nuances de l’expérience de la douleur qui ont été capturées par le PBD. Chez tous les patients, le NRS partageait un IM significatif avec l’intensité de l’AVS, le désagrément de l’AVA et le MPQ, tandis que la somme du PBD partageait l’IM avec la couverture du PBD et la moyenne du PBD (p < 0,05, Figure 3B). Dans l’ensemble, pour la plupart des patients, les mesures PBD partageaient l’IM avec les mesures de douleur établies.
Les PBD étaient faciles à utiliser pour la plupart des participants
Dans le cadre de l’étude, quatre des cinq patients ont trouvé que le PBD était facile à utiliser et qu’il reflétait fidèlement leur douleur (tableau supplémentaire 2). Cependant, le patient 4 a signalé que le PBD était difficile à utiliser (5 sur une échelle de Likert à 5 points). C’est principalement parce qu’ils ont une douleur profonde et viscérale, qui n’est pas bien capturée dans un PBD en 2 dimensions (2D). Bien que les patients aient été plus ou moins familiers avec les PBD (2,8 ± 1,2, plage de 1 à 4, échelle de Likert à 5 points), ils ont tous utilisé quotidiennement des appareils électroniques comparables (5,0 ± 0,0, échelle de Likert à 5 points) et ont trouvé que la PBD était conviviale (5,2 ± 0,4, plage de 5 à 6, échelle de Likert à 6 points).
Graphique 1. Workflow d’analyse du diagramme corporel de la douleur (PBD). Les patients ont utilisé des modèles de PBD vierges pour représenter l’emplacement et l’intensité de la douleur. Les PBD terminés contenaient des teintes allant du vert au bleu en passant par le rouge, représentant respectivement des régions de douleur légère, modérée à sévère. Les PBD ont été masqués pour n’inclure que les pixels dans le contour du corps, puis le modèle a été supprimé pour isoler uniquement les pixels contenant des teintes. À partir des PBD, la couverture PBD (%), l’intensité totale (normalisée à 0-100) et l’intensité moyenne (normalisée à 0-100) ont été calculées. Pour la couverture PBD, le nombre de pixels colorés a d’abord été divisé par le nombre total de pixels dans le diagramme (820 452 pixels pour les femmes, 724 608 pixels pour les hommes), puis multiplié par 100. Pour l’intensité de la somme PBD, les valeurs de teinte de tous les pixels du diagramme du corps ont d’abord été additionnées (plage féminine : 0-114 453 054 ; plage masculine : 0-101 082 816). La somme a ensuite été divisée par l’intensité maximale de la somme PBD (femmes : 820 452 pixels multiplié par la valeur maximale de teinte 139,5, hommes : 724 608 pixels par 139,5) et multipliée par 100. Pour l’intensité moyenne PBD, la somme de toutes les valeurs de teinte a été divisée par le nombre total de pixels colorés, puis normalisée en divisant par la valeur maximale de teinte de 139,5. Veuillez cliquer ici pour voir une version agrandie de cette figure.
Graphique 2. PBD représentatifs montrant des exemples de bons et de mauvais PBD. (A,B) De bons PBD montrent l’utilité de calculer 3 mesures de douleur. (C) Les mauvais exemples de PBD comprennent une taille de stylo excessivement épaisse, des éléments superflus à l’extérieur du diagramme du corps et un effacement inexact. Veuillez cliquer ici pour voir une version agrandie de cette figure.
Graphique 3. Les mesures PBD ont été validées par rapport aux mesures standard de la douleur via les analyses de corrélation et d’information mutuelle de Spearman. (A) L’intensité de l’EVA et la somme de la PBD sont tracées avec des lignes linéaires de meilleur ajustement tracées pour chaque patient. (B) Données au niveau du groupe montrant l’information mutuelle moyenne (IM) entre chaque mesure de la douleur, l’IM étant indiquée par une barre de couleur à droite. Le texte de chaque case représente le nombre de patients présentant un infarctus du myocarde statistiquement significatif pour une comparaison par paires donnée (p. ex., 3/5 indique 3 patients avec des valeurs significatives). L’IM est présenté par l’IM observé divisé par l’IM maximal théorique. Abréviations : NRS = échelle d’évaluation numérique ; Intensité VAS = intensité de l’échelle visuelle analogique ; VAS unpl. = désagrément visuel de la douleur à l’échelle analogique, QPM = questionnaire abrégé sur la douleur de McGill 2 ; PBD = diagramme corporel de la douleur ; PBD cov. = couverture PBD, IM = information mutuelle, sig. = significative. Veuillez cliquer ici pour voir une version agrandie de cette figure.
Figure supplémentaire 1. La moyenne PBD (A) et la couverture PBD (B) sont tracées en fonction de l’intensité de l’EVA avec des lignes linéaires les mieux ajustées tracées pour chaque patient. Abréviations : VAS = échelle visuelle analogique ; PBD = diagramme corporel de la douleur. Veuillez cliquer ici pour télécharger ce fichier.
Figure supplémentaire 2. Entropie par mesure de la douleur chez les patients. Au niveau du groupe, l’intensité du NRS avait une entropie inférieure à celle de toutes les autres mesures de la douleur, comme le montre une ANOVA à un facteur à mesures répétées, suivie du test post-hoc de Tukey pour des comparaisons spécifiques * = p < 0,05, ** = p < 0,001. Abréviations : NRS = échelle d’évaluation numérique ; VAS = échelle visuelle analogique ; MPQ = Questionnaire sur la douleur de McGill ; PBD = diagramme corporel de la douleur. Veuillez cliquer ici pour télécharger ce fichier.
Tableau supplémentaire 1. Les corrélations de Spearman entre les mesures PBD et les mesures standard de la douleur autodéclarées. Coefficients de corrélation (rho) de Spearman pour trois mesures PBD extraites par rapport aux mesures de douleur NRS, VAS et MPQ. Abréviations : NRS = échelle d’évaluation numérique ; VAS = échelle visuelle analogique ; MPQ = Questionnaire sur la douleur de McGill ; PBD = diagramme corporel de la douleur. Veuillez cliquer ici pour télécharger ce fichier.
Tableau supplémentaire 2. Les impressions des patients sur la réalisation d’un PBD ont été révélées par le biais de questions spécifiques au PBD et de l’échelle d’utilisabilité du système. Les questions modifiées sur l’échelle d’utilisabilité alternaient les énoncés positifs et négatifs et étaient classées sur une échelle de 5 points (1 = tout à fait d’accord, 5 = pas du tout d’accord). Abréviation : PBD = diagramme du corps de la douleur. Veuillez cliquer ici pour télécharger ce fichier.
Fichier de codage supplémentaire 1 : script Python pour les métriques PBD. Le code python annoté traite un fichier PNG de diagramme de corps de douleur et génère des valeurs de moyenne, de couverture et de somme PBD pour chaque fichier. Le script inclut également des instructions d’importation permettant de télécharger les packages requis pour que le programme s’exécute. Veuillez cliquer ici pour télécharger ce fichier.
Dossier complémentaire 1 : Dossier complémentaire pour les précisions méthodologiques. Veuillez cliquer ici pour télécharger ce fichier.
Étapes critiques du protocole
Les étapes clés comprennent : la configuration du PBD, les instructions du patient et le prétraitement. Pour la configuration du PBD, chaque PBD spécifique au sexe doit visualiser une vue de face et de dos26 et être superposé avec un calque vide sur une application d’illustration pour isoler les valeurs de teinte. De plus, la taille du stylo doit répondre aux besoins d’illustration des patients et des gradients de teinte doivent être définis pour analyser quantitativement les PBD. L’instruction du patient et la compréhension de l’outil sont fondamentales pour obtenir des données fiables. Il faut prévoir suffisamment de temps pour que les participants puissent s’exercer à mettre en œuvre l’outil sur le PBD. Utilisez la méthode d’apprentissage pour confirmer la compréhension des tâches et des sondages par les participants périodiquement pendant les tests, environ une fois tous les 10 PBD. Afin de garder une trace des PBD individuels, il est également judicieux de nommer chaque fichier avec un titre et un horodatage uniques une fois terminé. Après la collecte des données, chaque mesure PBD peut être extraite à l’aide de scripts Python27 (voir le fichier de codage supplémentaire 1). Les mesures de la couverture PBD, de l’intensité totale et de l’intensité moyenne peuvent être répétées avant et après tout traitement ou intervention pour suivre les réponses à la douleur chez le patient. Pour extraire ces mesures, un chercheur qui n’est pas directement impliqué dans la collecte de données doit superposer des calques de masque noir pour isoler uniquement les couleurs dessinées à l’intérieur du contour du corps, puis calculer les valeurs de pixels HSV à l’aide d’un code logiciel personnalisé fourni en tant que fichier supplémentaire 1.
Modifications et dépannage dans la technique
Les étapes méthodologiques ont été affinées lors de la collecte des données du patient 1. Il s’agit notamment de laisser plus de temps aux patients pour se familiariser avec le contrôle de la sensibilité à la pression du stylo, de configurer correctement les couches de diagrammes corporels pour le masquage et l’analyse ultérieurs, de limiter l’utilisation de symboles ou de mots sur les PBD et d’ajuster la sensibilité absolue à la pression du stylo en fonction de la force et de la dextérité de chaque participant (bien que la transformation entre la pression relative et la teinte soit restée constante). Les patients ont été autorisés à choisir la taille de leur stylo pour représenter au mieux leur douleur ; Cependant, le choix d’une taille fixe peut permettre de meilleures comparaisons futures entre les patients. Dans les itérations futures, le prototypage d’une méthode qui utilise un canal de couleur (par exemple, le rouge, le vert ou le bleu) et la variation de la luminosité de la couleur en fonction de la pression du stylet peuvent minimiser la perte de précision possible lors de la conversion de l’espace colorimétrique RVB en espace colorimétrique TSL.
Limites de la technique
Les PBD exigent que les patients aient une force motrice et une dextérité de base suffisantes dans au moins un membre supérieur avec une bonne capacité motrice fine dans les doigts au minimum pour compléter des diagrammes de manière indépendante et pour traduire avec précision leur expérience de la douleur par pression. Alors que les mesures standard de la douleur telles que NRS et MPQ peuvent être saisies sur papier ou sur un clavier par un assistant par communication verbale, cette modification avec les PBD n’est pas encore validée. Les PBD manquent également de profondeur en tant qu’illustration bidimensionnelle. Il a été démontré qualitativement que le niveau de détail d’un diagramme corporel tridimensionnel élargit la communication de l’information sur la douleur17. Une caractérisation plus poussée de la profondeur de la douleur permet de saisir de nouvelles informations sur la douleur qui ne sont pas examinées dans des échelles telles que le NRS, l’EVA et le MPQ. À l’heure actuelle, les diagrammes corporels ne sont pas conçus pour capturer une somatisation plus abstraite ou des formes plus profondes de douleur. Par exemple, le patient 4 a déclaré que l’emplacement et l’intensité de la douleur n’étaient pas bien caractérisés par le diagramme corporel de l’enquête sur l’utilisabilité, car il estimait qu’ils ne reflétaient pas sa douleur neuropathique interne. Le patient 5 a souvent dessiné des lignes pointillées dans les diagrammes corporels pour indiquer la lourdeur dans son corps, ce qui peut confondre les calculs métriques. Les futures itérations de PBD pourraient être étendues pour représenter la somatisation de la douleur ou de la douleur viscérale dans une méthode quantifiable. Enfin, les PBD ont été analysés dans un cadre N-of-1, où près de 100 PBD distincts ont été générés pour chaque participant. Il n’a pas été possible d’effectuer des analyses au niveau du groupe en raison du petit nombre total de participants. Par conséquent, il n’a pas été possible de déterminer la fiabilité test-retest dans cette étude, car les réponses aux échelles NRS sont confrontées à un biais d’ancrage, ce qui suggère que les mêmes scores NRS peuvent ne pas être équivalents aux mêmes PBD testés après l’essai. Des recherches futures seront nécessaires pour évaluer les paramètres PBD dans un contexte d’analyse par groupe et la fiabilité test-retest de la méthode dans un échantillon plus large.
Importance de la méthode par rapport aux méthodes existantes
Les PBD ont été largement utilisés dans les milieux cliniques et de recherche pour démontrer l’intensité de la douleur d’un participant dans son corps14,15, mais cet outil est resté largement limité par sa nature qualitative. Bien que la cartographie numérique de la douleur ait été utilisée pour suivre longitudinalement la douleur chronique16, les patients n’avaient pas la capacité de représenter l’intensité et l’emplacement de la douleur dans une technique combinée et précise. Cette nouvelle transformation pression-teinte incorporée aux PBD fournit des mesures composites spatiales et quantitatives de la douleur qui peuvent être mesurées et suivies à plusieurs reprises dans le temps pour capturer l’expérience de la douleur d’un participant. Ici, il a été démontré que trois mesures PBD extraites qui reflétaient de manière différentielle l’intensité et l’emplacement de la douleur chez un patient, c’est-à-dire la couverture PBD, l’intensité totale et l’intensité moyenne, présentaient une validité et une concordance élevées avec des mesures standardisées de la douleur telles que l’intensité NRS, l’intensité VAS, le désagrément VAS et le MPQ. Toutes les mesures de PBD étaient corrélées aux scores VAS et NRS chez quatre patients sur cinq et significativement corrélées à la MPQ chez trois patients sur cinq. De plus, l’approche de la théorie de l’information 28,29,30,31 a révélé des relations non linéaires qui n’ont pas été détectées avec des méthodes statistiques plus courantes. Dans l’étude, quatre patients sur cinq présentaient un infarctus du myocarde significatif entre les mesures PBD et le SNR, l’intensité de l’AVS, le désagrément de l’AVA et le MPQ, ce qui démontre un chevauchement significatif, mais non total, du contenu de l’information. Ainsi, les mesures PBD étaient très concordantes avec les mesures standardisées de la douleur, mais la moyenne PBD semblait refléter une combinaison d’informations d’intensité et de localisation qui n’était pas présente dans les mesures conventionnelles de la douleur.
Applications futures de cette technique
Les résultats actuels démontrent que les PBD peuvent être particulièrement appropriés pour les patients qui ressentent et quantifient leur douleur sur une échelle non linéaire. De la même manière que les descripteurs verbaux peuvent fournir une autre dimension aux participants pour évaluer la douleur, les PBD fournissent une interprétation graphique unique et basée sur la pression de leur douleur. En mettant en œuvre une nouvelle transformation pression-teinte, les diagrammes corporels fournissent des informations sur l’emplacement, la propagation et la variation régionale de l’intensité de la douleur, ce qui, à notre connaissance, n’a pas été démontré auparavant. Avec les données neuronales recueillies au cours de tout essai de SCP, les mesures PBD peuvent être un outil puissant pour localiser la douleur dans différentes régions du corps vers différentes régions du cerveau et aider à informer les études mécanistiques sur les voies de signalisation de la douleur. La transformation pression-teinte mise en œuvre dans les PBD peut être utilisée dans de nombreux contextes cliniques et de recherche pour analyser le soulagement de la douleur en réponse au traitement ou comparer la douleur au fil du temps. Cette méthode produit non seulement des diagrammes uniques et visuellement intuitifs pour évaluer la douleur, mais capture également avec précision l’expérience d’un patient au-delà d’un score numérique unique.
Les auteurs déclarent que la recherche a été menée en l’absence de toute relation commerciale ou financière qui pourrait être interprétée comme un conflit d’intérêts potentiel.
Cette étude a été financée par la subvention UH3-NS115631 des National Institutes of Health à PS. Les sources de financement ont approuvé la conception de l’étude, mais n’ont joué aucun rôle dans l’exécution de l’étude, l’analyse des données ou la préparation du manuscrit. Nous remercions également le Dr Edward F. Chang, le Dr Philip A. Starr et les participants à notre étude.
Name | Company | Catalog Number | Comments |
Adobe Photoshop v.21.2.1 | Adobe Inc. | N/A | Photo editor application to pre-process pain body diagrams |
Apple Pencil 2nd generation | Apple Inc. | A2051 | Digital pen for pressure-hue transformation |
iPad Pro (11-inch, 2nd generation) | Apple Inc. | MY332LL/A | Touch-sensitive digital tablet |
Pain Body Diagram Template | 123RF | 95218807 | Copyright Use |
Procreate v5.3.1 | Procreate | N/A | Commercially available illustration applicataion |
REDCap v13.2.1 | Vanderbilt University | N/A | Secure web survey and database application |
Demande d’autorisation pour utiliser le texte ou les figures de cet article JoVE
Demande d’autorisationExplorer plus d’articles
This article has been published
Video Coming Soon