S'identifier

Dynamique des structures

Vue d'ensemble

Source : Roberto Leon, département de génie Civil et environnemental, Virginia Tech, Blacksburg, VA

Il est rare de nos jours qu’une année entière se passe sans qu’un événement de tremblement de terre majeur des ravages quelque part dans le monde entier. Dans certains cas, comme le tremblement de terre 2005 de Banda Ache en Indonésie, les dommages impliqués de vastes régions géographiques et nombre de victimes dans les six chiffres. En général, le nombre et l’intensité des tremblements de terre n’augmente pas, cependant, augmente la vulnérabilité de l’environnement bâti. Avec l’urbanisation non réglementée autour des zones sismiquement actives, telles que la « ceinture de feu, » Circum-Pacifique mer passant en zone côtière pose de basse et l’augmentation des concentrations de production/distribution d’énergie et numérique/télécommunication nœuds critiques du réseau dans les zones vulnérables, il est clair que la conception parasismique est résilience communautaires clés pour le futur.

Conception de structures de résister à tremblement de terre a progressé considérablement au cours des 50 dernières années, principalement par le biais de travaux au Japon après le séisme de Niigata de 1964 et aux Etats-Unis après le séisme de San Fernando Valley de 1971. Le travail a avancé le long de trois voies parallèles : (a) travail expérimental visant à en développement techniques de construction améliorée pour minimiser les dégâts et pertes en vies humaines ; (b) des études analytiques basées sur des modèles matériels avancés géométriques et non linéaire ; et, (c) synthèse des résultats (a) et (b) dans les dispositions de code de conception qui améliorent la capacité des structures à résister aux charges inattendues.

La prospection sismique en laboratoire est souvent difficile et coûteuse. Essais sont effectués principalement à l’aide de trois techniques suivantes :

  1. Tests de quasi statique (TVQ), où les parties d’une structure sont testés à l’aide d’appliqué lentement et prédéterminés de manière équivalente les déformations latérales avec conditions aux limites idéalisées. Cette technique est particulièrement utile pour évaluer les effets des détails structurels sur la capacité de résistance et de déformation des parties particulières des structures.
  2. Tests de Pseudo-dynamique (PSDT), où les charges sont appliquées aussi lentement, mais les effets dynamiques sont pris en compte en résolvant les équations du mouvement en cours de test et en utilisant le test direct de rétroactions (principalement la rigidité instantanée) pour évaluer la rigidité réelle et caractéristiques de l’amortissement de la structure.
  3. Secouer les tables, où les modèles réduits de structures complètes sont soumis pour entrer des requêtes à l’aide d’une commande hydraulique de base ou de la Fondation. Les tables de Shake représentent une plus fidèle technique de test, car la structure n’est pas restreint artificiellement, l’entrée est vrai mouvement et forces qui en résultent sont vraiment inertiel, comme on pourrait s’attendre à un véritable tremblement de terre. Cependant, les besoins en puissance sont énormes et seulement quelques-uns secouer tables capable de travailler à presque grandeur nature existent dans le monde entier. Globalement, il y a qu’une seule table de vibration grandes capables de réaliser des tests sur les structures à grande échelle, qui est la table de vibration à l’installation de E-Defense au Japon, construit après le séisme de Kobe de 1985.

Dans cette expérience, nous utiliserons une petite secousse table et modèle de structures afin d’étudier les caractéristiques du comportement dynamique de certains modèles structurels. C’est ces caractéristiques dynamiques, principalement la fréquence et l’amortissement, ainsi que la qualité des détails structurels et construction, qui font des structures plus ou moins vulnérable aux tremblements de terre.

Procédure

1. modèles

  1. Tout d’abord construire plusieurs structures à l’aide de très minces, fortes, rectangulaires, T6011 poutres en aluminium, 1/32 po de largeur et ayant des longueurs différentes. Pour construire le premier modèle, insérez un porte-à-faux unique avec une longueur de 12 po à un bloc de bois très rigide. Placer une masse de 0,25 lb à l’extrémité du levier.
  2. De même, construire des autres structures de modèle en attachant des poutres en porte-à-faux avec différentes longueurs pour le même bloc de

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Résultats

Tout d’abord, déterminez la fréquence (ω) auquel le déplacement maximal s’est produite pour chaque modèle. La formule simple originale, nous l’avons vu, Equation 21 , doit être modifié car la masse de la poutre elle-même (mb = Wfaisceau/g), qui est distribué sur toute sa hauteur, n’est pas négligeable par rapport à la masse en haut (m = W bloc/g). La masse ...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Applications et Résumé

Dans cette expérience, la fréquence et l’amortissement d’un système en porte-à-faux simple ont été mesurées à l’aide de tables de secousse. Bien que le contenu de la fréquence d’un séisme est aléatoire et couvre une large bande de fréquences, les spectres de fréquence peuvent être développées en traduisant l’histoire de temps d’accélération dans le domaine des fréquences grâce à l’utilisation des transformées de Fourier. Si les fréquences prédominantes des mouvements du sol correspon...

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags
Valeur videquestion

Passer à...

0:07

Overview

1:30

Principles of Structural Dynamics

5:06

Models

6:10

Procedure

7:42

Results

10:30

Applications

11:36

Summary

Vidéos de cette collection:

article

Now Playing

Dynamique des structures

Structural Engineering

11.4K Vues

article

Constantes de matériau

Structural Engineering

23.4K Vues

article

Caractéristiques de contrainte-déformation des aciers

Structural Engineering

109.0K Vues

article

Caractéristiques de contrainte-déformation de l'aluminium

Structural Engineering

88.2K Vues

article

Essai de résilience Charpy sur des aciers pliés à froid et laminés à chaud dans des conditions de température variées

Structural Engineering

32.1K Vues

article

Essai de dureté Rockwell et effet du traitement sur l'acier

Structural Engineering

28.3K Vues

article

Flambage des colonnes d'acier

Structural Engineering

36.0K Vues

article

Fatigue des métaux

Structural Engineering

40.3K Vues

article

Essais de traction des polymères

Structural Engineering

25.2K Vues

article

Essai de traction sur des matériaux renforcés par des fibres

Structural Engineering

14.3K Vues

article

Granulats pour les mélanges de béton et d'asphalte

Structural Engineering

12.1K Vues

article

Essais sur le béton frais

Structural Engineering

25.7K Vues

article

Essais de compression sur le béton durci

Structural Engineering

15.1K Vues

article

Essais de traction sur béton durci

Structural Engineering

23.5K Vues

article

Essais sur le bois

Structural Engineering

32.8K Vues

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.