JoVE Logo

Sign In

Multivesicular bodies (MVBs) are mature endosomes that sort ubiquitinated proteins and then fuse with lysosomes to degrade the sorted proteins. Epidermal growth factor (EGF) and its receptor (EGFR) form a complex that can be internalized through endocytosis, sorted into an MVB, and later degraded.

The EGFR can initiate signaling pathways that lead to cell proliferation, migration, and differentiation. Overexpression of EGFR stimulates cells to proliferate. Excessive EGFR activation may result in cancer; therefore, EGFR expression must be tightly regulated. The degradation of the EGF-EGFR complex through the endocytic pathway is a means of downregulating EGFR and preventing its overexpression.

EGF binding to EGFR induces EGFR dimerization. EGFR is ubiquitinated by a ubiquitin ligase. Ubiquitination triggers the endocytosis of the dimerized EGF-EGFR complex. Once inside the cell, the complex is first sorted into the early endosome. As the early endosome matures, ESCRT proteins, or endosomal sorting complexes required for transport, translocate the EGFR-EGF complex into intraluminal vesicles (ILVs). Several ILVs are formed inside the maturing endosome, eventually becoming multivesicular bodies (MVBs). MVBs containing the EGF-EGFR complex then fuses with a lysosome for degradation of the EGFR-EGF complex.

Similar to EGFR, cytokine receptors are also internalized and downregulated by MVBs. Ubiquitinated receptor-cytokine complexes are endocytosed and later delivered to MVBs for degradation. The degradation weakens the cytokine signaling. In the case of pro-inflammatory cytokines, such as tumor necrosis factor alpha (TNFɑ) or interleukin-1 (IL-1), any defect in ubiquitination, endocytosis, or degradation of the receptor-cytokine complex through MVB can cause enhanced or sustained signaling. This may lead to inflammatory diseases like Crohn's disease or rheumatoid arthritis.

Tags

Receptor DownregulationMultivesicular Bodies MVBsEpidermal Growth Factor Receptor EGFREndocytosisUbiquitinationESCRT ProteinsIntraluminal Vesicles ILVsLysosome DegradationCytokine ReceptorsPro inflammatory CytokinesTumor Necrosis Factor Alpha TNFInterleukin 1 IL 1Inflammatory Diseases

From Chapter 18:

article

Now Playing

18.8 : Receptor Downregulation in MVBs

Endocytosis and Exocytosis

2.0K Views

article

18.1 : אנדוציטוזה

Endocytosis and Exocytosis

8.6K Views

article

18.2 : פגוציטוזה

Endocytosis and Exocytosis

5.8K Views

article

18.3 : פינוציטוזה

Endocytosis and Exocytosis

3.1K Views

article

18.4 : אנדוציטוזה בתיווך קולטן

Endocytosis and Exocytosis

5.8K Views

article

18.5 : האנדוזום המוקדם: אנדוציטוזה של טרנספרין

Endocytosis and Exocytosis

3.2K Views

article

18.6 : הבשלה של אנדוזומים

Endocytosis and Exocytosis

4.0K Views

article

18.7 : שלפוחיות intralumenal וגופים multivesicular

Endocytosis and Exocytosis

3.3K Views

article

18.9 : סקירה כללית של Exosomes

Endocytosis and Exocytosis

2.7K Views

article

18.10 : מיחזור אנדוזומים וטרנסציטוזה

Endocytosis and Exocytosis

2.5K Views

article

18.11 : טרנסציטוזה של IgG

Endocytosis and Exocytosis

2.7K Views

article

18.12 : אקסוציטוזה

Endocytosis and Exocytosis

6.4K Views

article

18.13 : סקירה כללית של שלפוחיות הפרשה

Endocytosis and Exocytosis

7.2K Views

article

18.14 : שלפוחיות הפרשת אינסולין

Endocytosis and Exocytosis

4.8K Views

article

18.15 : מיזוג של שלפוחיות הפרשה עם קרום הפלזמה

Endocytosis and Exocytosis

9.5K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved