Sign In

When a carbonyl compound is treated with a strong base, the α position gets deprotonated to give a resonance-stabilized intermediate called an enolate. Enolates are ambident nucleophiles because they possess two nucleophilic sites that can attack an electrophile owing to the delocalization of the negative charge between the α carbon and oxygen atoms. When the oxygen atom attacks an electrophile, it is called O-attack, whereas electrophilic attack via the α carbon is known as C-attack.

C-attack is much more common than O-attack despite the negative charge being more localized on the oxygen atom. (Recall that for a set of contributing structures with a negative charge on different atoms, the contributing structure with the negative charge on the most electronegative atom will usually most closely resemble the true structure.) As a result, there are two distinct conventions in drawing the C-attack mechanism:

  1. The oxyanion form, where the mechanism begins with the oxyanion contributing structure. This is technically a more accurate representation of the mechanism because the oxyanion form is closer to the true structure, but it involves an additional mechanism arrow to show the flow of electron density from oxygen to the α carbon.
  2. The carbanion form, where the mechanism begins with the carbanion contributing structure. This is technically less accurate because the carbanion form is a less significant resonance contributor, but it is still a clear and valid representation so long as it is understood that the electron density of the delocalized system is actually concentrated on the oxygen atom.

The carbanion mechanism convention is more simplistic in representation because it needs fewer curved arrows, but both conventions are widely used.

Tags
Enolate MechanismCarbonyl CompoundStrong BaseDeprotonationResonance stabilized IntermediateAmbident NucleophilesNucleophilic SitesO attackC attackOxyanion FormCarbanion FormResonance ContributorsElectron DensityMechanism Representation

From Chapter 15:

article

Now Playing

15.4 : Enolate Mechanism Conventions

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.1 : תגובתיות של אנולים

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.8K Views

article

15.2 : תגובתיות של יוני אנולט

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.3 : סוגי אנולים ואנולטים

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.5 : היווצרות רגיוסלקטיבית של אנולטים

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Views

article

15.6 : השפעות סטריאוכימיות של אנוליזציה

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Views

article

15.7 : α-הלוגנציה מזורזת חומצה של אלדהידים וקטונים

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.4K Views

article

15.8 : α-הלוגנציה מקודמת בסיס של אלדהידים וקטונים

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.9 : הלוגנציה מרובה של קטונים מתיל: תגובת הלופורם

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.10 : α-הלוגנציה של נגזרות חומצה קרבוקסילית: סקירה כללית

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.11 : α-ברום של חומצות קרבוקסיליות: תגובת גיהנום-וולהרד-זלינסקי

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

article

15.12 : תגובות של תרכובות α-Halocarbonyl: החלפה נוקלאופילית

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.13 : ניטרוזיציה של אנולים

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.14 : היווצרות אג"ח C-C: סקירה כללית של עיבוי Aldol

α-Carbon Chemistry: Enols, Enolates, and Enamines

13.2K Views

article

15.15 : תגובת תוספת Aldol בקטליזציה בסיסית

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved