S'identifier

When a carbonyl compound is treated with a strong base, the α position gets deprotonated to give a resonance-stabilized intermediate called an enolate. Enolates are ambident nucleophiles because they possess two nucleophilic sites that can attack an electrophile owing to the delocalization of the negative charge between the α carbon and oxygen atoms. When the oxygen atom attacks an electrophile, it is called O-attack, whereas electrophilic attack via the α carbon is known as C-attack.

C-attack is much more common than O-attack despite the negative charge being more localized on the oxygen atom. (Recall that for a set of contributing structures with a negative charge on different atoms, the contributing structure with the negative charge on the most electronegative atom will usually most closely resemble the true structure.) As a result, there are two distinct conventions in drawing the C-attack mechanism:

  1. The oxyanion form, where the mechanism begins with the oxyanion contributing structure. This is technically a more accurate representation of the mechanism because the oxyanion form is closer to the true structure, but it involves an additional mechanism arrow to show the flow of electron density from oxygen to the α carbon.
  2. The carbanion form, where the mechanism begins with the carbanion contributing structure. This is technically less accurate because the carbanion form is a less significant resonance contributor, but it is still a clear and valid representation so long as it is understood that the electron density of the delocalized system is actually concentrated on the oxygen atom.

The carbanion mechanism convention is more simplistic in representation because it needs fewer curved arrows, but both conventions are widely used.

Tags
Enolate MechanismCarbonyl CompoundStrong BaseDeprotonationResonance stabilized IntermediateAmbident NucleophilesNucleophilic SitesO attackC attackOxyanion FormCarbanion FormResonance ContributorsElectron DensityMechanism Representation

Du chapitre 15:

article

Now Playing

15.4 : Enolate Mechanism Conventions

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Vues

article

15.1 : Réactivité des énols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.8K Vues

article

15.2 : Réactivité des ions énolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Vues

article

15.3 : Types d’énols et d’énolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Vues

article

15.5 : Formation régiosélective des énolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.4K Vues

article

15.6 : Effets stéréochimiques de l’énolisation

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.9K Vues

article

15.7 : α-halogénation d’aldéhydes et de cétones catalysée par un acide

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.4K Vues

article

15.8 : α-halogénation des aldéhydes et des cétones promue par une base

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Vues

article

15.9 : Halogénation multiple des méthylcétones : réaction haloforme

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Vues

article

15.10 : α-halogénation des dérivés de l’acide carboxylique : aperçu

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Vues

article

15.11 : α-bromation des acides carboxyliques : réaction Hell-Volhard-Zelinski

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Vues

article

15.12 : Réactions des composés α-halocarbonyles : substitution nucléophile

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Vues

article

15.13 : Nitrosation des énols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Vues

article

15.14 : Formation de liaisons C-C : aperçu de la condensation Aldol

α-Carbon Chemistry: Enols, Enolates, and Enamines

13.2K Vues

article

15.15 : Réaction d’addition d’aldol catalysée par une base

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.9K Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.