Sign In

Ampère's law, in its usual form, does not work in places where the current changes with time and is not steady. Thus, Maxwell suggested including an additional contribution, called the displacement current, Id, to the real conduction current I.

Equation1

where the displacement current is defined to be

Equation2

Here, ε0is the permittivity of free space, and ΦEis the electric flux.

The displacement current is an extra term in Maxwell's equations that is analogous to a real current in Ampère's law. However, it is produced by a changing electric field. It accounts for a changing electric field producing a magnetic field, just as a real current does, but the displacement current can produce a magnetic field even when no real current is present. When this extra term is included, the modified Ampère's law equation becomes

Equation3

In this way, Ampère's law can be modified so that it works in all situations, and it is independent of the surface through which the current I is measured.

Tags
Displacement CurrentAmp re s LawMaxwell s EquationsChanging Electric FieldMagnetic FieldPermittivity Of Free SpaceElectric FluxModified Amp re s LawReal Conduction CurrentTime varying Current

From Chapter 30:

article

Now Playing

30.9 : Displacement Current

Electromagnetic Induction

2.7K Views

article

30.1 : אינדוקציה

Electromagnetic Induction

3.7K Views

article

30.2 : חוק פאראדיי

Electromagnetic Induction

3.7K Views

article

30.3 : חוק לנץ

Electromagnetic Induction

3.3K Views

article

30.4 : Motional Emf

Electromagnetic Induction

3.0K Views

article

30.5 : דינמו דיסק פאראדיי

Electromagnetic Induction

1.9K Views

article

30.6 : שדות חשמליים מושרים

Electromagnetic Induction

3.4K Views

article

30.7 : שדות חשמליים מושרים: יישומים

Electromagnetic Induction

1.4K Views

article

30.8 : אדי זרמים

Electromagnetic Induction

1.4K Views

article

30.10 : משמעות זרם העקירה

Electromagnetic Induction

4.2K Views

article

30.11 : שדות אלקטרומגנטיים

Electromagnetic Induction

2.0K Views

article

30.12 : משוואת האלקטרומגנטיות של מקסוול

Electromagnetic Induction

2.9K Views

article

30.13 : סימטריה במשוואות מקסוול

Electromagnetic Induction

3.1K Views

article

30.14 : חוק אמפר-מקסוול: פתרון בעיות

Electromagnetic Induction

438 Views

article

30.15 : צורה דיפרנציאלית של משוואות מקסוול

Electromagnetic Induction

339 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved