S'identifier

Ampère's law, in its usual form, does not work in places where the current changes with time and is not steady. Thus, Maxwell suggested including an additional contribution, called the displacement current, Id, to the real conduction current I.

Equation1

where the displacement current is defined to be

Equation2

Here, ε0is the permittivity of free space, and ΦEis the electric flux.

The displacement current is an extra term in Maxwell's equations that is analogous to a real current in Ampère's law. However, it is produced by a changing electric field. It accounts for a changing electric field producing a magnetic field, just as a real current does, but the displacement current can produce a magnetic field even when no real current is present. When this extra term is included, the modified Ampère's law equation becomes

Equation3

In this way, Ampère's law can be modified so that it works in all situations, and it is independent of the surface through which the current I is measured.

Tags
Displacement CurrentAmp re s LawMaxwell s EquationsChanging Electric FieldMagnetic FieldPermittivity Of Free SpaceElectric FluxModified Amp re s LawReal Conduction CurrentTime varying Current

Du chapitre 30:

article

Now Playing

30.9 : Displacement Current

Electromagnetic Induction

2.7K Vues

article

30.1 : Induction

Electromagnetic Induction

3.7K Vues

article

30.2 : Loi de Faraday

Electromagnetic Induction

3.7K Vues

article

30.3 : Loi de Lenz

Electromagnetic Induction

3.3K Vues

article

30.4 : F.Emf mobile

Electromagnetic Induction

3.0K Vues

article

30.5 : Dynamo de disque Faraday

Electromagnetic Induction

1.9K Vues

article

30.6 : Champs électriques induits

Electromagnetic Induction

3.4K Vues

article

30.7 : Champs électriques induits : applications

Electromagnetic Induction

1.4K Vues

article

30.8 : Courants de Foucault

Electromagnetic Induction

1.4K Vues

article

30.10 : Importance du courant de déplacement

Electromagnetic Induction

4.2K Vues

article

30.11 : Champs électromagnétiques

Electromagnetic Induction

2.0K Vues

article

30.12 : Équation de Maxwell de l’électromagnétisme

Electromagnetic Induction

2.9K Vues

article

30.13 : Symétrie dans les équations de Maxwell

Electromagnetic Induction

3.1K Vues

article

30.14 : Loi d’Ampère-Maxwell : résolution de problèmes

Electromagnetic Induction

438 Vues

article

30.15 : Forme différentielle des équations de Maxwell

Electromagnetic Induction

339 Vues

See More

JoVE Logo

Confidentialité

Conditions d'utilisation

Politiques

Recherche

Enseignement

À PROPOS DE JoVE

Copyright © 2025 MyJoVE Corporation. Tous droits réservés.