Sign In

Doane University

2 ARTICLES PUBLISHED IN JoVE

image

Chemistry

Inkjet Printing All Inorganic Halide Perovskite Inks for Photovoltaic Applications
Dylan Richmond 1, Mason McCormick 2, Thilini K. Ekanayaka 3, Jacob D. Teeter 2, Benjamin L. Swanson 1, Nicole Benker 3, Guanhua Hao 3, Sharmin Sikich 4, Axel Enders 5, Alexander Sinitskii 2, Carolina C. Ilie 1, Peter A. Dowben 3, Andrew J. Yost 3
1Department of Physics, State University of New York-Oswego, 2Department of Chemistry, University of Nebraska-Lincoln, 3Department of Physics, University of Nebraska-Lincoln, 4Department of Chemistry, Doane University, 5Physikalisches Institut, Universität Bayreuth

A protocol for synthesizing inorganic-lead-halide hybrid perovskite quantum dot inks for inkjet printing and the protocol for preparing and printing the quantum dot inks in an inkjet printer with post characterization techniques are presented.

image

Bioengineering

Live Cell Analysis of Shear Stress on Pseudomonas aeruginosa Using an Automated Higher-Throughput Microfluidic System
Arin L. Sutlief *1, Helena Valquier-Flynn 1, Christina Wilson 1, Marco Perez 1, Hunter Kleinschmidt 2, Brett J. Schofield 2, Elizabeth Delmain 3, Andrea E. Holmes 1, Christopher D. Wentworth *4
1Department of Chemistry, Doane University, 2Department of Biology, Doane University, 3Department of Pathology and Microbiology, University of Nebraska Medical Center, 4Department of Physics and Engineering, Doane University

Here, we describe the use of a higher-throughput microfluidic bioreactor coupled with a fluorescent microscope for the analysis of shear stress effects on Pseudomonas aeruginosa biofilms expressing green fluorescent proteins, including instrument set up, the determination of biofilm coverage, growth rate, and morphological properties.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved