JoVE Logo
Faculty Resource Center

Sign In

Boise State University

3 ARTICLES PUBLISHED IN JoVE

image

Engineering

Co-localizing Kelvin Probe Force Microscopy with Other Microscopies and Spectroscopies: Selected Applications in Corrosion Characterization of Alloys
Olivia O. Maryon *1, Corey M. Efaw *1, Frank W. DelRio 2, Elton Graugnard 1,3, Michael F. Hurley 1,3, Paul H. Davis 1,3
1Micron School of Materials Science & Engineering, Boise State University, 2Material, Physical, and Chemical Sciences Center, Sandia National Laboratories, 3Center for Advanced Energy Studies

Kelvin probe force microscopy (KPFM) measures surface topography and differences in surface potential, while scanning electron microscopy (SEM) and associated spectroscopies can elucidate surface morphology, composition, crystallinity, and crystallographic orientation. Accordingly, the co-localization of SEM with KPFM can provide insight into the effects of nanoscale composition and surface structure on corrosion.

image

Engineering

Optimizing Magnetic Force Microscopy Resolution and Sensitivity to Visualize Nanoscale Magnetic Domains
Audrey C. Parker *1, Olivia O. Maryon *1, Mojtaba T. Kaffash 2, M. Benjamin Jungfleisch 2, Paul H. Davis 1,3
1Micron School of Materials Science & Engineering, Boise State University, 2Department of Physics and Astronomy, University of Delaware, 3Center for Advanced Energy Studies

Magnetic force microscopy (MFM) employs a vertically magnetized atomic force microscopy probe to measure sample topography and local magnetic field strength with nanoscale resolution. Optimizing MFM spatial resolution and sensitivity requires balancing decreasing lift height against increasing drive (oscillation) amplitude, and benefits from operating in an inert atmosphere glovebox.

image

JoVE Core

Atomic Force Microscopy Cantilever-Based Nanoindentation: Mechanical Property Measurements at the Nanoscale in Air and Fluid
Ashton E. Enrriques 1, Sean Howard 2, Raju Timsina 3, Nawal K. Khadka 3, Amber N. Hoover 4, Allison E. Ray 5, Ling Ding 4, Chioma Onwumelu 6, Stephan Nordeng 6, Laxman Mainali 3,7, Gunes Uzer 2, Paul H. Davis 1,8
1Micron School of Materials Science & Engineering, Boise State University, 2Department of Mechanical & Biomedical Engineering, Boise State University, 3Department of Physics, Boise State University, 4Energy and Environmental Science and Technology, Idaho National Laboratory, 5Science and Technology, Idaho National Laboratory, 6Harold Hamm School of Geology & Geological Engineering, University of North Dakota, 7Biomolecular Sciences Graduate Program, Boise State University, 8Center for Advanced Energy Studies

Quantifying the contact area and force applied by an atomic force microscope (AFM) probe tip to a sample surface enables nanoscale mechanical property determination. Best practices to implement AFM cantilever-based nanoindentation in air or fluid on soft and hard samples to measure elastic modulus or other nanomechanical properties are discussed.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved