A description of a method for profiling mitochondrial function in cells is provided. The mitochondrial profile generated provides four parameters of mitochondrial function that can be measured in one experiment: basal respiration rate, ATP-linked respiration, proton leak, and reserve capacity.
Here, we introduce a semiconductor sequencing method for preimplantation genetic testing for aneuploidy (PGT-A) with the advantages of short turnaround time, low cost, and high throughput.
This protocol describes techniques to measure infectious outcomes underlying secondary hospital-acquired infections in the immunosuppressive condition, first by establishing cecal ligation/puncture mice then challenging them with intranasal infection to create a clinically relevant model of immunosuppression sepsis.
In this study, we describe a detailed procedure of TNBS-mediated intestinal fibrosis, which exhibits comparable pathophysiology to Crohn's fibrosis. We also discuss this approach in light of rapamycin facilitated inhibitory effects on intestinal fibrosis.
For in-depth mechanistic analysis of the respiratory syncytial virus (RSV) RNA synthesis, we report a protocol of utilizing the chaperone phosphoprotein (P) for coexpression of the RNA-free nucleoprotein (N0) for subsequent in vitro assembly of the virus-specific nucleocapsids (NCs).
Miniscope in vivo calcium imaging is a powerful technique to study neuronal dynamics and microcircuits in freely behaving mice. This protocol describes performing brain surgeries to achieve good in vivo calcium imaging using a miniscope.
Quantifying the contact area and force applied by an atomic force microscope (AFM) probe tip to a sample surface enables nanoscale mechanical property determination. Best practices to implement AFM cantilever-based nanoindentation in air or fluid on soft and hard samples to measure elastic modulus or other nanomechanical properties are discussed.
Air-liquid interface culture is commonly used to develop pseudostratified airway epithelium by differentiating primary normal human bronchial epithelial cells that mimic the apical side of the lung airway. Here, we describe an easy protocol for determining its quality by monitoring its biophysical properties, such as ciliary function and membrane integrity.
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved