Sign In

Wyss Institute for Biologically Inspired Engineering at Harvard University

2 ARTICLES PUBLISHED IN JoVE

image

Biology

Intraductal Injection for Localized Drug Delivery to the Mouse Mammary Gland
Silva Krause 1, Amy Brock 2, Donald E. Ingber 1,2,3
1Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, 2Wyss Institute for Biologically Inspired Engineering, Harvard University, 3Harvard School of Engineering and Applied Sciences

A protocol for the non-invasive intraductal delivery of aqueous reagents to the mouse mammary gland is described. The method takes advantage of localized injection into the nipples of mammary glands targeting mammary ducts specifically. This technique is adaptable for a variety of compounds including siRNA, chemotherapeutic agents and small molecules.

image

Bioengineering

Co-culture of Living Microbiome with Microengineered Human Intestinal Villi in a Gut-on-a-Chip Microfluidic Device
Hyun Jung Kim 1, Jaewon Lee 1, Jin-Ha Choi 1, Anthony Bahinski 2, Donald E. Ingber 2,3,4
1Department of Biomedical Engineering, The University of Texas at Austin, 2Wyss Institute for Biologically Inspired Engineering at Harvard University, 3Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, 4John A. Paulson School of Engineering and Applied Sciences, Harvard University

We describe an in vitro protocol to co-culture gut microbiome and intestinal villi for an extended period using a human gut-on-a-chip microphysiological system.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved