Quantification of DNA double-strand streaks using γH2AX formation as a molecular marker has become an invaluable tool in radiation biology. Here we demonstrate the use of an immunofluorescence assay for quantification of γH2AX foci after exposure of cells to radiation.
Quantitation of DNA double-strand breaks on the basis of γH2AX foci has become an invaluable tool, particularly in radiation biology, for the evaluation of tissue radiosensitivity and effects of radiation modifying compounds. Here we demonstrate the use of an immunofluorescence assay for quantitation of γH2AX foci in tissue samples.
Microscopic analysis of γH2AX foci, which form following the phosphorylation of H2AX at Ser-139 in response to DNA double-strand breaks, has become an invaluable tool in radiation biology. Here we used an antibody to mono-methylated histone H3 at lysine 4 as an epigenetic marker of actively transcribing euchromatin, to evaluate the spatial distribution of radiation-induced γH2AX formation within the nucleus.
The applicability of the clonogenic assay for evaluating reproductive viability has been established for more than 50 years. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cells.
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved