Primary mouse cardiomyocyte cultures are one of the pivotal tools for the investigation of myofibrillar organization and function. The following protocol describes the isolation and culture of primary cardiomyocytes from neonatal mouse hearts. The resulting cardiomyocyte cultures may be subsequently used for a variety of biomechanical, biochemical and cell-biological assays.
We have developed an accurate, non-invasive, and easy-to-use method to quantify endothelial permeability and dysfunction in the arteries using Magnetic Resonance Imaging (MRI), named qMETRIC. This technique enables assessing vascular damage and cardiovascular risk associated with atherosclerosis in preclinical models and humans.
This protocol offers detailed instructions for establishing murine small intestine organoids, isolating type-1 innate lymphoid cells from the murine small intestine lamina propria, and establishing 3-dimensional (3D) co-cultures between both cell types to study bi-directional interactions between intestinal epithelial cells and type-1 innate lymphoid cells.
Optical clarity is a major advantage for cell biological and physiological work in zebrafish. Robust methods for measurement of cell growth in individual animals are described that permit novel insights into how growth of skeletal muscle and neighboring tissues are integrated with whole body growth.
This work presents an optimized protocol to reproducibly immobilize and quantify type I and III collagen onto microplates, followed by an improved in vitro binding assay protocol to study collagen-compound interactions using a time-resolved fluorescence method. The subsequent step-by-step data analysis and data interpretation are provided.
Recent Advances and Best Practices for Cryo-EM Analysis for Protein Structure Determination
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved