Sign In

University of Michigan-Dearborn

1 ARTICLES PUBLISHED IN JoVE

image

Bioengineering

Quantitative and Temporal Control of Oxygen Microenvironment at the Single Islet Level
Joe Fu-Jiou Lo 1, Yong Wang 2,3, Zidong Li 1, Zhengtuo Zhao 1, Di Hu 1, David T. Eddington 3, Jose Oberholzer 2,3
1Department of Mechanical Engineering, University of Michigan-Dearborn, 2Department of Surgery/Transplant, University of Illinois at Chicago, 3Department of Bioengineering, University of Illinois at Chicago

Microfluidic oxygen control confers more than just convenience and speed over hypoxic chambers for biological experiments. Especially when implemented via diffusion through a membrane, microfluidic oxygen can provide simultaneous liquid and gas phase modulations at the microscale-level. This technique enables dynamic multi-parametric experiments critical for studying islet pathophysiology.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved