Guidelines for computer based structural and functional characterization of protein using the I-TASSER pipeline is described. Starting from query protein sequence, 3D models are generated using multiple threading alignments and iterative structural assembly simulations. Functional inferences are thereafter drawn based on matches to proteins with known structure and functions.
This paper presents a sensitive method called Circle-Seq for purifying extrachromosomal circular DNA (eccDNA). The method encompasses column purification, removal of remaining linear chromosomal DNA, rolling-circle amplification and high-throughput sequencing. Circle-Seq is applicable to genome-scale screening of eukaryotic eccDNA and studying genome instability and copy-number variation.
This protocol describes a noninvasive technique for the sampling of undisturbed mucosal lining fluid from the upper airways. It can be used to perform the quantification of in vivo levels of protein mediators, such as cytokines and chemokines, in subjects of all ages.
This study presents an improved rabbit model infected with Staphylococcus aureus by blocking the same amount of bacteria in bone marrow. Vancomycin loaded calcium sulphate and autogenous bone are used for antibiotic and bone repair treatment. The protocol could be helpful for studying bone infection and regeneration.
Here, we present a protocol to simultaneously study the flammability and burning efficiency of fresh and weathered crude oil under conditions that simulate in situ burning operations on the sea.
A protocol for fabricating injection molding inserts for complex geometry with micro features on surfaces employing Additive Manufacturing (AM) is presented.
Animal models of cochlear implants can advance knowledge of the technological bases of treating permanent sensorineural hearing loss with electrical stimulation. This study presents a surgical protocol for acute deafening and cochlear implantation of an electrode array in mice as well as the functional assessment with auditory brainstem response.
Oxide materials show many exotic properties that can be controlled by tuning the oxygen content. Here, we demonstrate the tuning of oxygen content in oxides by varying the pulsed laser deposition parameters and by performing postannealing. As an example, electronic properties of SrTiO3-based heterostructures are tuned by growth modifications and annealing.
The bone extracellular matrix (BEM) model for osteosarcoma (OS) is well established and shown here. It can be used as a suitable scaffold for mimicking primary tumor growth in vitro and providing an ideal model for studying the histologic and cytogenic heterogeneity of OS.
This article explains in detail a systematic approach to assess micro-mineral availability in Atlantic salmon. The methodology includes tools and models with increasing biological complexity: (1) chemical speciation analysis, (2) in vitro solubility, (3) uptake studies in cell lines, and (4) in vivo fish studies.
This protocol describes the fabrication of liposomes and how these can be immobilized on a surface and imaged individually in a massive parallel manner using fluorescence microscopy. This allows for the quantification of the size and compositional inhomogeneity between single liposomes of the population.
We demonstrate algal toxicity testing for difficult substances (e.g., colored substances or nanomaterials) using a setup illuminated vertically with an LED.
This paper is a demonstration and a guideline to perform and analyze in-house (with a laboratory X-ray instrument) in situ GISAXS experiments of drying inks on roll-to-roll slot-die coated, non-fullerene organic photovoltaics.
This protocol describes a composite animal model with exposure to particulate matter (PM) that aggravates myocardial ischemia with atherosclerosis.
The present research demonstrates a method to accurately examine dynamic visual acuity (DVA) in myopic subjects with eyeglass correction. Further analysis indicated that the closer the refraction state to emmetropia, the better the eyeglass-corrected binocular DVA is at both 40 and 80 degrees per second.
Here, we describe the method of generating an artificial decidualization model using the ovariectomized mouse, a classic endometrial decidualization experiment in the research field of endometrial decidualization.
This work describes a protocol for the freeform embedded 3D printing of neural stem cells inside self-healing annealable particle-extracellular matrix composites. The protocol enables the programmable patterning of interconnected human neural tissue constructs with high fidelity.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved