Sialic acid is a typical monosaccharide-unit found in glycoconjugates. It is involved in a plethora of molecular and cellular interactions. Here we present a method to modify cell surface sialic acid expression using metabolic glycoengineering with N-acetylmannosamine derivatives.
Synthetic biology enables the engineering of proteins with unprecedented properties using the co-translational insertion of non-canonical amino acids. Here, we presented how a spectrally red-shifted variant of a GFP-type fluorophore with novel fluorescence spectroscopic properties, termed "gold" fluorescent protein (GdFP), is produced in E. coli via selective pressure incorporation (SPI).
The protocol presents the Escherichia coli-based selective pressure incorporation of non-canonical amino acids (ncAAs) into the lactococcal antimicrobial peptide nisin. Its properties can be changed during recombinant expression via substitution with desired ncAAs in defined growth media. Resulting changes in bioactivity are mapped by growth inhibition assays and fluorescence microscopy.
The human blood-brain barrier selectively prevents penetration of hydrophilic molecules and pathogens into the brain. Several pathologies, including meningitis and postoperative delirium, are associated with an increased permeability of the blood-brain barrier. Here, we describe an endothelial cell culture model to test the barrier permeability by microbial traversal.
To overcome the limitations of classical site-directed mutagenesis, proline analogs with specific modifications were incorporated into several fluorescent proteins. We show how the replacement of hydrogen by fluorine or of the single by double bonds in proline residues ("molecular surgery") affects fundamental protein properties, including their folding and interaction with light.
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved