JoVE Logo

Sign In

Hunan Agricultural University (HUNAU)

11 ARTICLES PUBLISHED IN JoVE

image

Immunology and Infection

Protocol for Production of a Genetic Cross of the Rodent Malaria Parasites
Sittiporn Pattaradilokrat 1, Jian Li 1,2, Xin-zhuan Su 1
1National Institute of Allergy and Infectious Diseases, National Institutes of Health, 2School of Life Science, Xiamen University

Genetic crosses of rodent malaria parasites are performed by feeding two genetically distinct parasites to mosquitoes. Recombinant progeny are cloned from mouse blood after allowing mosquitoes to bite infected mice. This video shows how to produce genetic crosses of Plasmodium yoelii and is applicable to other rodent malaria parasites.

image

Bioengineering

Simultaneous Synthesis of Single-walled Carbon Nanotubes and Graphene in a Magnetically-enhanced Arc Plasma
Jian Li 1, Alexey Shashurin 1, Madhusudhan Kundrapu 1, Michael Keidar 1
1Department of Mechanical and Aerospace Engineering, The George Washington University

Anodic arc discharge is one of the most practical and efficient methods to synthesize various carbon nanostructures. To increase the arc controllability and flexibility, a non-uniform magnetic field was introduced to process the one-step synthesis of large-scale graphene flakes and high-purity single-walled carbon nanotubes.

image

Bioengineering

Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair
Jian Li 1, Holger Jahr 2,3, Wei Zheng 4, Pei-Gen Ren 1
1Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 2Department of Orthopedic Surgery, Maastricht UMC+, 3Department of Orthopaedic Surgery, University Hospital RWTH, 4Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Here, we present a protocol to visualize blood vessel formation in vivo and in real-time in 3D scaffolds by multiphoton microscopy. Angiogenesis in genetically modified scaffolds was studied in a murine calvarial critical bone defect model. More new blood vessels were detected in the treatment group than in controls.

image

Medicine

Optimized LC-MS/MS Method for the High-throughput Analysis of Clinical Samples of Ivacaftor, Its Major Metabolites, and Lumacaftor in Biological Fluids of Cystic Fibrosis Patients
Elena K. Schneider 1, Felisa Reyes-Ortega 1, Jian Li 1,2, Tony Velkov 1
1Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 2Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University

Ivacaftor and ivacaftor-lumacaftor combination are two new CF drugs. However, there is still a dearth of understanding on their PK/PD and pharmacology. We present an optimized HPLC-MS technique for the simultaneous analysis of ivacaftor and its major metabolites, and lumacaftor.

image

JoVE Journal

Identification of Homologous Recombination Events in Mouse Embryonic Stem Cells Using Southern Blotting and Polymerase Chain Reaction
Dan Zhou *1,2, Lei Tan *1, Jian Li *3, Tanbin Liu 1, Yi Hu 1, Yalan Li 1, Sachiyo Kawamoto 4, Chengyu Liu 5, Shiyin Guo 3, Aibing Wang 1
1Lab of Animal Models and Functional Genomics (LAMFG), The Key Laboratory of Animal Vaccine & Protein Engineering, College of Veterinary Medicine, Hunan Agricultural University (HUNAU), 2Department of Pathology, Georgetown University Medical School, 3College of Food Science and Technology, Hunan Agricultural University (HUNAU), 4Lab of Molecular Cardiology (LMC), National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH), 5Transgenic Core, National Heart, Lung, and Blood Institute (NHLBI)/National Institutes of Health (NIH)

Here, we present a detailed protocol for identifying homologous recombination events that occurred in mouse embryonic stem cells using Southern blotting and/or PCR. This method is exemplified by the generation of nonmuscle myosin II genetic replacement mouse models using traditional embryonic stem cell-based homologous recombination-mediated targeting technology.

image

Cancer Research

Repression of Multiple Myeloma Cell Growth In Vivo by Single-wall Carbon Nanotube (SWCNT)-delivered MALAT1 Antisense Oligos
Jianhong Lin *1,2, Yi Hu *1, Jian-Jun Zhao 1
1Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 2Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School

This manuscript describes the synthesis of a single-wall carbon nanotube (SWCNT)-conjugated MALAT1 antisense gapmer DNA oligonucleotide (SWCNT-anti-MALAT1), which demonstrates the reliable delivery of the SWCNT and the potent therapeutic effect of anti-MALAT1 in vitro and in vivo. Methods used for synthesis, modification, conjugation, and injection of SWCNT-anti-MALAT1 are described.

image

JoVE Core

Home-Based Prescribed Pulmonary Exercise in Patients with Stable Chronic Obstructive Pulmonary Disease
Xiaodan Liu 1,2, Peijun Li 3, Jian Li 3, Lu Xiao 1, Ning Li 3, Yufan Lu 3, Zhengrong Wang 3, Jianqing Su 3, Zhenwei Wang 4, Chunlei Shan 1,2, Weibing Wu 3
1School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, 2Institute of Rehabilitation Medicine, Shanghai Academy of Traditional Chinese Medicine, 3Department of Sports Medicine, Shanghai University of Sport, 4Department of Respiratory Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine

Presented here is a protocol to investigate the effects of home-based prescribed pulmonary exercise in stable chronic obstructive pulmonary disease (COPD) patients, which is modified based on traditional Chinese exercises according to dyspnea and limited exercise capacity observed in COPD patients.

image

Neuroscience

Inter-Brain Synchrony in Open-Ended Collaborative Learning: An fNIRS-Hyperscanning Study
Nan Zhao 1,2, Yi Zhu 1,2, Yi Hu 1,2
1School of Psychology and Cognitive Science, East China Normal University, 2Shanghai Key Laboratory of Mental Health and Crisis Intervention, East China Normal University

The protocol for conducting fNIRS hyperscanning experiments on collaborative learning dyads in a naturalistic learning environment is outlined. Further, a pipeline to analyze the Inter-Brain Synchrony (IBS) of oxygenated hemoglobin (Oxy-Hb) signals is presented.

image

Neuroscience

How to Calculate and Validate Inter-brain Synchronization in a fNIRS Hyperscanning Study
Yinying Hu 1, Zixuan Wang 1, Bei Song 2, Yafeng Pan 3, Xiaojun Cheng 4, Yi Zhu 1, Yi Hu 1
1Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, 2Department of Musicology, Harbin Conservatory of Music, 3Department of Clinical Neuroscience, Karolinska Institutet, 4School of Psychology, Shenzhen University

The dynamics between coupled brains of individuals have been increasingly represented by inter-brain synchronization (IBS) when they coordinate with each other, mostly using simultaneous-recording signals of brains (namely hyperscanning) with fNIRS. In fNIRS hyperscanning studies, IBS has been commonly assessed through the wavelet transform coherence (WTC) method because of its advantage on expanding time series into time-frequency space where oscillations can be seen in a highly intuitive way. The observed IBS can be further validated via the permutation-based random pairing of the trial, partner, and condition. Here, a protocol is presented to describe how to obtain brain signals via fNIRS technology, calculate IBS through the WTC method, and validate IBS by permutation in a hyperscanning study. Further, we discuss the critical issues when using the above methods, including the choice of fNIRS signals, methods of data preprocessing, and optional parameters of computations. In summary, using the WTC method and permutation is a potentially standard pipeline for analyzing IBS in fNIRS hyperscanning studies, contributing to both the reproducibility and reliability of IBS.

image

Neuroscience

Intraventricular Drug Delivery and Sampling for Pharmacokinetics and Pharmacodynamics Study
Sara Oberrauch 1, Jing Lu 1, Linda Cornthwaite-Duncan 1, Maytham Hussein 1, Jian Li 2, Gauri Rao 3, Tony Velkov 1
1Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 2Department of Microbiology, Biomedicine Discovery Institute, Monash University, 3UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill

Delivery of therapeutics directly into the central nervous system is one way of circumventing the blood-brain barrier. The present protocol demonstrates intracerebroventricular injection for subsequent collection of cerebrospinal fluid and bodily organs. This facilitates the investigation of drug pharmacokinetics and pharmacodynamics in animal models for developing new treatments.

image

Immunology and Infection

Rat Burn Model to Study Full-Thickness Cutaneous Thermal Burn and Infection
Rajnikant Sharma 1, Shekhar Yeshwante 1, Quentin Vallé 1, Maytham Hussein 2, Varsha Thombare 2, Sean Michael McCann 1, Robert Maile 3,4,5, Jian Li 6, Tony Velkov 2, Gauri Rao 1
1UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 2Department of Biochemistry & Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, 3Department of Microbiology & Immunology, University of North Carolina School of Medicine, 4Department of Surgery, University of North Carolina at Chapel Hill, 5Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, 6Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University

A model mimicking the clinical scenario of burn injury and infection is necessary for furthering burn research. The present protocol demonstrates a simple and reproducible rat burn infection model comparable to that in humans. This facilitates the study of burn and infections following burn for developing new topical antibiotic treatments.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved