Genetic crosses of rodent malaria parasites are performed by feeding two genetically distinct parasites to mosquitoes. Recombinant progeny are cloned from mouse blood after allowing mosquitoes to bite infected mice. This video shows how to produce genetic crosses of Plasmodium yoelii and is applicable to other rodent malaria parasites.
Anodic arc discharge is one of the most practical and efficient methods to synthesize various carbon nanostructures. To increase the arc controllability and flexibility, a non-uniform magnetic field was introduced to process the one-step synthesis of large-scale graphene flakes and high-purity single-walled carbon nanotubes.
Here, we present a protocol to visualize blood vessel formation in vivo and in real-time in 3D scaffolds by multiphoton microscopy. Angiogenesis in genetically modified scaffolds was studied in a murine calvarial critical bone defect model. More new blood vessels were detected in the treatment group than in controls.
Ivacaftor and ivacaftor-lumacaftor combination are two new CF drugs. However, there is still a dearth of understanding on their PK/PD and pharmacology. We present an optimized HPLC-MS technique for the simultaneous analysis of ivacaftor and its major metabolites, and lumacaftor.
Here, we present a detailed protocol for identifying homologous recombination events that occurred in mouse embryonic stem cells using Southern blotting and/or PCR. This method is exemplified by the generation of nonmuscle myosin II genetic replacement mouse models using traditional embryonic stem cell-based homologous recombination-mediated targeting technology.
This manuscript describes the synthesis of a single-wall carbon nanotube (SWCNT)-conjugated MALAT1 antisense gapmer DNA oligonucleotide (SWCNT-anti-MALAT1), which demonstrates the reliable delivery of the SWCNT and the potent therapeutic effect of anti-MALAT1 in vitro and in vivo. Methods used for synthesis, modification, conjugation, and injection of SWCNT-anti-MALAT1 are described.
Presented here is a protocol to investigate the effects of home-based prescribed pulmonary exercise in stable chronic obstructive pulmonary disease (COPD) patients, which is modified based on traditional Chinese exercises according to dyspnea and limited exercise capacity observed in COPD patients.
The protocol for conducting fNIRS hyperscanning experiments on collaborative learning dyads in a naturalistic learning environment is outlined. Further, a pipeline to analyze the Inter-Brain Synchrony (IBS) of oxygenated hemoglobin (Oxy-Hb) signals is presented.
The dynamics between coupled brains of individuals have been increasingly represented by inter-brain synchronization (IBS) when they coordinate with each other, mostly using simultaneous-recording signals of brains (namely hyperscanning) with fNIRS. In fNIRS hyperscanning studies, IBS has been commonly assessed through the wavelet transform coherence (WTC) method because of its advantage on expanding time series into time-frequency space where oscillations can be seen in a highly intuitive way. The observed IBS can be further validated via the permutation-based random pairing of the trial, partner, and condition. Here, a protocol is presented to describe how to obtain brain signals via fNIRS technology, calculate IBS through the WTC method, and validate IBS by permutation in a hyperscanning study. Further, we discuss the critical issues when using the above methods, including the choice of fNIRS signals, methods of data preprocessing, and optional parameters of computations. In summary, using the WTC method and permutation is a potentially standard pipeline for analyzing IBS in fNIRS hyperscanning studies, contributing to both the reproducibility and reliability of IBS.
Delivery of therapeutics directly into the central nervous system is one way of circumventing the blood-brain barrier. The present protocol demonstrates intracerebroventricular injection for subsequent collection of cerebrospinal fluid and bodily organs. This facilitates the investigation of drug pharmacokinetics and pharmacodynamics in animal models for developing new treatments.
A model mimicking the clinical scenario of burn injury and infection is necessary for furthering burn research. The present protocol demonstrates a simple and reproducible rat burn infection model comparable to that in humans. This facilitates the study of burn and infections following burn for developing new topical antibiotic treatments.
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved