JoVE Logo

Accedi

The Wittig reaction is the conversion of carbonyl compounds—aldehydes and ketones—to alkenes using phosphorus ylides, or the Wittig reagent. The reaction was pioneered by Prof. Georg Wittig, for which he was awarded the Nobel Prize in Chemistry.

Figure1

Phosphorus ylide is a neutral molecule containing a negatively charged carbon directly bonded to a positively charged phosphorus atom. The molecule is stabilized by resonance.

Figure2

The Wittig reagents are synthesized from unhindered alkyl halides in two steps. At first, the alkyl halide undergoes an SN2 attack by a triphenylphosphine molecule generating a phosphonium salt. Next, in the presence of a strong base such as butyllithium, sodium hydride, or sodium amide, the salt undergoes deprotonation of the weakly acidic α hydrogen, producing the carbanionic ylide nucleophile.

Figure3

Wittig reactions are regioselective, as the new C=C bond is formed explicitly at the carbonyl position. The stereoselectivity depends on the nature of the phosphorus ylide. Ylides with electron-withdrawing groups, such as carbonyl or aromatic rings that are stabilized by additional resonance structure, predominantly generate E alkenes. Alternatively, Wittig reagents with simple alkyl groups primarily form Z alkenes.

Figure4

The yield of Wittig reactions is influenced by steric crowding around the carbonyl group. Ketones that are sterically more hindered give poor yields compared to aldehydes. A variation of the Wittig reaction is the Horner–Wadsworth–Emmons reaction that involves a phosphonate ester reagent producing the E alkene as the major product.

Figure5

Tags

Wittig ReactionAldehydesKetonesAlkenesPhosphorus YlidesWittig ReagentPhosphonium SaltRegioselectivityStereoselectivityHorner wadsworth emmons Reaction

Dal capitolo 12:

article

Now Playing

12.17 : Aldehydes and Ketones to Alkenes: Wittig Reaction Overview

Aldehydes and Ketones

7.5K Visualizzazioni

article

12.1 : Strutture di aldeidi e chetoni

Aldehydes and Ketones

8.1K Visualizzazioni

article

12.2 : IUPAC Nomenclatura delle aldeidi

Aldehydes and Ketones

5.2K Visualizzazioni

article

12.3 : IUPAC Nomenclatura dei chetoni

Aldehydes and Ketones

5.3K Visualizzazioni

article

12.4 : Nomi comuni di aldeidi e chetoni

Aldehydes and Ketones

3.3K Visualizzazioni

article

12.5 : Spettroscopia IR e UV-Vis di aldeidi e chetoni

Aldehydes and Ketones

5.0K Visualizzazioni

article

12.6 : Spettroscopia NMR e spettrometria di massa di aldeidi e chetoni

Aldehydes and Ketones

3.6K Visualizzazioni

article

12.7 : Preparazione di Aldeidi e Chetoni da Alcoli, Alcheni e Alchini

Aldehydes and Ketones

3.4K Visualizzazioni

article

12.8 : Preparazione di Aldeidi e Chetoni da Nitrili e Acidi Carbossilici

Aldehydes and Ketones

3.3K Visualizzazioni

article

12.9 : Preparazione di Aldeidi e Chetoni da Derivati dell'Acido Carbossilico

Aldehydes and Ketones

2.5K Visualizzazioni

article

12.10 : Addizione nucleofila al gruppo carbonilico: meccanismo generale

Aldehydes and Ketones

5.0K Visualizzazioni

article

12.11 : Aldeidi e chetoni con acqua: formazione di idrati

Aldehydes and Ketones

3.0K Visualizzazioni

article

12.12 : Aldeidi e Chetoni con Alcoli: Formazione Emiacetale

Aldehydes and Ketones

5.5K Visualizzazioni

article

12.13 : Gruppi di protezione per aldeidi e chetoni: Introduzione

Aldehydes and Ketones

6.4K Visualizzazioni

article

12.14 : Acetali e tioacetali come gruppi protettivi per aldeidi e chetoni

Aldehydes and Ketones

3.9K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati