JoVE Logo

로그인

12.17 : Aldehydes and Ketones to Alkenes: Wittig Reaction Overview

The Wittig reaction is the conversion of carbonyl compounds—aldehydes and ketones—to alkenes using phosphorus ylides, or the Wittig reagent. The reaction was pioneered by Prof. Georg Wittig, for which he was awarded the Nobel Prize in Chemistry.

Figure1

Phosphorus ylide is a neutral molecule containing a negatively charged carbon directly bonded to a positively charged phosphorus atom. The molecule is stabilized by resonance.

Figure2

The Wittig reagents are synthesized from unhindered alkyl halides in two steps. At first, the alkyl halide undergoes an SN2 attack by a triphenylphosphine molecule generating a phosphonium salt. Next, in the presence of a strong base such as butyllithium, sodium hydride, or sodium amide, the salt undergoes deprotonation of the weakly acidic α hydrogen, producing the carbanionic ylide nucleophile.

Figure3

Wittig reactions are regioselective, as the new C=C bond is formed explicitly at the carbonyl position. The stereoselectivity depends on the nature of the phosphorus ylide. Ylides with electron-withdrawing groups, such as carbonyl or aromatic rings that are stabilized by additional resonance structure, predominantly generate E alkenes. Alternatively, Wittig reagents with simple alkyl groups primarily form Z alkenes.

Figure4

The yield of Wittig reactions is influenced by steric crowding around the carbonyl group. Ketones that are sterically more hindered give poor yields compared to aldehydes. A variation of the Wittig reaction is the Horner–Wadsworth–Emmons reaction that involves a phosphonate ester reagent producing the E alkene as the major product.

Figure5

Tags

Wittig ReactionAldehydesKetonesAlkenesPhosphorus YlidesWittig ReagentPhosphonium SaltRegioselectivityStereoselectivityHorner wadsworth emmons Reaction

장에서 12:

article

Now Playing

12.17 : Aldehydes and Ketones to Alkenes: Wittig Reaction Overview

Aldehydes and Ketones

7.5K Views

article

12.1 : 알데히드와 케톤의 구조

Aldehydes and Ketones

8.1K Views

article

12.2 : IUPAC 알데히드의 명명법

Aldehydes and Ketones

5.2K Views

article

12.3 : IUPAC 케톤의 명명법

Aldehydes and Ketones

5.3K Views

article

12.4 : 알데히드와 케톤의 일반적인 이름

Aldehydes and Ketones

3.3K Views

article

12.5 : 알데히드 및 케톤의 IR 및 UV-Vis 분광법

Aldehydes and Ketones

5.0K Views

article

12.6 : NMR 분광법 및 알데히드 및 케톤의 질량 분광법

Aldehydes and Ketones

3.6K Views

article

12.7 : Alcohols, Alkenes 및 Alkynes로부터 Aldehydes 및 Ketones의 제조

Aldehydes and Ketones

3.4K Views

article

12.8 : 니트릴과 카르복실산으로부터 알데히드와 케톤의 제조

Aldehydes and Ketones

3.3K Views

article

12.9 : 카르복실산 유도체로부터 알데히드 및 케톤의 제조

Aldehydes and Ketones

2.5K Views

article

12.10 : 카르보닐기에 친핵성 첨가: 일반 메커니즘

Aldehydes and Ketones

5.0K Views

article

12.11 : 알데히드와 케톤과 물 함유: 수분 형성

Aldehydes and Ketones

3.0K Views

article

12.12 : 알데히드와 알코올을 함유한 케톤: 헤미아세탈 형성

Aldehydes and Ketones

5.5K Views

article

12.13 : 알데히드 및 케톤에 대한 그룹 보호: 소개

Aldehydes and Ketones

6.4K Views

article

12.14 : 아세탈과 티오아세탈은 알데히드와 케톤을 위한 보호기로서

Aldehydes and Ketones

3.9K Views

See More

JoVE Logo

개인 정보 보호

이용 약관

정책

연구

교육

JoVE 소개

Copyright © 2025 MyJoVE Corporation. 판권 소유