JoVE Logo

Accedi

Beams are structural elements commonly employed in engineering applications requiring different load-carrying capacities. The first step in analyzing a beam under a distributed load is to simplify the problem by dividing the load into smaller regions, which allows one to consider each region separately and calculate the magnitude of the equivalent resultant load acting on each portion of the beam. The magnitude of the equivalent resultant load for each region can be determined by calculating the area of the respective regions, which represents the force exerted by the load in each region.

Next, locate the position of each resultant load on the beam. This can be done by finding the centroids of the regions, which are the points where the mass of the regions can be considered concentrated. The individual resultant loads act at these centroids, exerting their force at specific points along the beam.

The equivalent resultant load for the entire beam can be calculated with the magnitudes and positions of the determined individual resultant loads. This involves adding the individual resultant loads of the different regions to obtain the overall equivalent resultant load acting on the beam.

The next step is to determine the moment about a specific point, usually the fixed end of the beam. The moment measures the rotational effect of the force acting on the beam. The resultant moment can be determined by adding the individual moments acting due to each load. The moment of each load is equal to the product of the force and its distance from the specified point.

Equation 1

By recalling the moment principle, the moment of the equivalent resultant load about the specified point equals the product of the equivalent resultant load and the distance from that point.

Equation 2

By rearranging the equation and substituting the terms, the location of the equivalent resultant load along the beam can be determined.

Equation 3

Tags

Distributed LoadsBeam AnalysisStructural ElementsEquivalent Resultant LoadLoad RegionsCentroidsMoment CalculationRotational EffectForce ExertionEngineering ApplicationsIndividual Resultant LoadsMoment Principle

Dal capitolo 4:

article

Now Playing

4.20 : Distributed Loads: Problem Solving

Force System Resultants

590 Visualizzazioni

article

4.1 : Momento di una forza: formulazione scalare

Force System Resultants

645 Visualizzazioni

article

4.2 : Momento di una forza: risoluzione dei problemi

Force System Resultants

525 Visualizzazioni

article

4.3 : Momento risultante: formulazione scalare

Force System Resultants

1.3K Visualizzazioni

article

4.4 : Momento di una forza: formulazione vettoriale

Force System Resultants

2.7K Visualizzazioni

article

4.5 : Forma cartesiana per la formulazione vettoriale

Force System Resultants

546 Visualizzazioni

article

4.6 : Momento risultante: formulazione vettoriale

Force System Resultants

3.0K Visualizzazioni

article

4.7 : Principio dei Momenti

Force System Resultants

1.5K Visualizzazioni

article

4.8 : Principio dei Momenti: Risoluzione dei Problemi

Force System Resultants

767 Visualizzazioni

article

4.9 : Momento di una forza attorno a un asse: scalare

Force System Resultants

292 Visualizzazioni

article

4.10 : Momento di una forza attorno a un asse: vettore

Force System Resultants

296 Visualizzazioni

article

4.11 : Coppia

Force System Resultants

375 Visualizzazioni

article

4.12 : Coppie: formulazione scalare e vettoriale

Force System Resultants

209 Visualizzazioni

article

4.13 : Coppie equivalenti

Force System Resultants

247 Visualizzazioni

article

4.14 : Momento di coppia: risoluzione dei problemi

Force System Resultants

811 Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati