Accedi

The double-stranded structure of DNA has two major advantages. First, it serves as a safe repository of genetic information where one strand serves as the back-up in case the other strand is damaged. Second, the double-helical structure can be wrapped around proteins called histones to form nucleosomes, which can then be tightly wound to form chromosomes. This way, DNA chains up to 2 inches long can be contained within microscopic structures in a cell. A double-stranded break not only damages both copies of genetic information but also disrupts the continuity of DNA, making the chromosome fragile.

In a cell, there are an estimated ten double-strand breaks (DSBs) per day. The primary source of damage is metabolic by-products such as Reactive Oxygen Species and environmental factors such as ionizing radiations. Although less common, malfunctioning nuclear enzymes can also cause DSBs. Failure of enzymes like type II topoisomerases, which cut both strands of DNA and rejoin them while disentangling chromosomes, can inadvertently result in DSBs. Mechanical stress on the DNA duplex can also lead to DSBs. In prokaryotes, prolonged desiccation strains DNA, causing DSBs.

Of the two mechanisms for DNA repair, homologous recombination depends on a sister chromatid being nearby, which happens during the S and G2 phases. Due to this restriction, in the absence of a homology donor, cells have to resort to Nonhomologous end joining (NHEJ), even though it is much less accurate. It has been hypothesized that the reason higher eukaryotes can afford to preferentially utilize NHEJ for DSB repairs is that they have abundant non-coding DNA, which permits nucleotide substitutions, deletions or additions without grievous consequences.

Tags
Double strand BreaksDNA RepairNon homologous End JoiningDNA End binding Heterodimeric Protein KuDNA dependent Protein KinaseDNA PolymeraseDNA Ligase IVMutationsGenomic RearrangementsHomologous RecombinationSingle stranded Overhangs

Dal capitolo 7:

article

Now Playing

7.6 : Riparazione delle rotture a doppio filamento

DNA Riparazione e Ricombinazione

11.7K Visualizzazioni

article

7.1 : Riparazione del DNA

DNA Riparazione e Ricombinazione

26.9K Visualizzazioni

article

7.2 : Base Excision Repair

DNA Riparazione e Ricombinazione

21.3K Visualizzazioni

article

7.3 : Long-patch Base Excision Repair

DNA Riparazione e Ricombinazione

6.9K Visualizzazioni

article

7.4 : Nucleotide Excision Repair

DNA Riparazione e Ricombinazione

11.0K Visualizzazioni

article

7.5 : DNA polimerasi di translesione

DNA Riparazione e Ricombinazione

9.6K Visualizzazioni

article

7.7 : Il danno al DNA può arrestare il ciclo cellulare

DNA Riparazione e Ricombinazione

8.9K Visualizzazioni

article

7.8 : Ricombinazione omologa

DNA Riparazione e Ricombinazione

49.5K Visualizzazioni

article

7.9 : Riavvio delle forche di replicazione bloccate

DNA Riparazione e Ricombinazione

5.7K Visualizzazioni

article

7.10 : Conversione genica

DNA Riparazione e Ricombinazione

9.5K Visualizzazioni

article

7.11 : Trasposizione e ricombinazione

DNA Riparazione e Ricombinazione

14.8K Visualizzazioni

article

7.12 : Trasposoni a DNA

DNA Riparazione e Ricombinazione

14.1K Visualizzazioni

article

7.13 : Retrovirus

DNA Riparazione e Ricombinazione

11.7K Visualizzazioni

article

7.14 : Retrotrasposoni LTR

DNA Riparazione e Ricombinazione

17.1K Visualizzazioni

article

7.15 : Retrotrasposoni non-LTR

DNA Riparazione e Ricombinazione

11.2K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati