Accedi

Bacteria and archaea are susceptible to viral infections just like eukaryotes; therefore, they have developed a unique adaptive immune system to protect themselves. Clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) are present in more than 45% of known bacteria and 90% of known archaea.

The CRISPR-Cas system stores a copy of foreign DNA in the host genome and uses it to identify the foreign DNA upon reinfection. CRISPR-Cas has three different stages to attack a reinfecting virus. In the acquisition stage, the protospacer region of viral DNA is cleaved by CRISPR systems. The specific protospacer region is identified for cleavage with the help of a protospacer adjacent motif (PAM) present in the target viral DNA. The cleaved protospacer sequence is then incorporated into the bacterial CRISPR locus. In the expression stage, the CRISPR and CAS genes are transcribed to produce pre-CRISPR RNA (crRNA) and the Cas mRNA. The pre-crRNA is then processed to produce mature crRNA. In the interference stage, crRNA and the translated Cas protein form a ribonucleoprotein complex that targets and cleaves the viral DNA in a sequence-specific manner.

CRISPR-Cas systems can be divided into three distinct types characterized by their Cas protein types. In Type I systems, Cas3 has helicase as well as nuclease activity. Multiple additional Cas proteins create a double-stranded break in viral DNA. In Type II systems, the nuclease Cas9 acts alone to cleave the DNA. In addition to crRNA, Type II systems also have trans-activating CRISPR RNA (tracrRNA) which is required for the maturation of the crRNA. In Type III systems, Cas10 has an unknown function, but like the type I system, it needs multiple proteins for the DNA cleavage. The type III system can also target RNA for cleavage. Type I and Type III are found in both bacteria and archaea, while to date type II has been only found in bacteria. Compared to conventional genome editing techniques like restriction enzymes, the CRISPR-Cas system is simpler to use can target multiple genes in the same experiment.; therefore, it has emerged as a powerful genetic engineering tool and is widely being used to modify the genome of both prokaryotic and eukaryotic organisms.

Tags
CRISPRCrRNAsBacteriophagesAdaptive Immunity SystemCRISPR Cas SystemBacteriophage DNACas ProteinCRISPR RNACleavageBacterial GenomeCRISPR RegionSpacer SequencesMemoryNucleotides

Dal capitolo 11:

article

Now Playing

11.11 : CRISPR e crRNAs

Ulteriori Ruoli del DNA

15.8K Visualizzazioni

article

11.1 : Attenuazione della trascrizione nei procarioti

Ulteriori Ruoli del DNA

14.9K Visualizzazioni

article

11.2 : Riboswitches (interruttori genici a RNA)

Ulteriori Ruoli del DNA

7.8K Visualizzazioni

article

11.3 : Modificazione dell'RNA

Ulteriori Ruoli del DNA

8.7K Visualizzazioni

article

11.4 : Trasporto regolato dell'mRNA

Ulteriori Ruoli del DNA

6.1K Visualizzazioni

article

11.5 : Leaky Scanning

Ulteriori Ruoli del DNA

5.0K Visualizzazioni

article

11.6 : Stabilità dell'mRNA ed espressione genica

Ulteriori Ruoli del DNA

5.4K Visualizzazioni

article

11.7 : RNA Interference

Ulteriori Ruoli del DNA

6.4K Visualizzazioni

article

11.8 : MicroRNA

Ulteriori Ruoli del DNA

9.9K Visualizzazioni

article

11.9 : siRNA - Small Interfering RNAs

Ulteriori Ruoli del DNA

15.9K Visualizzazioni

article

11.10 : piRNA - Piwi-interacting RNAs

Ulteriori Ruoli del DNA

6.6K Visualizzazioni

article

11.12 : lncRNA - Long Non-coding RNAs

Ulteriori Ruoli del DNA

8.3K Visualizzazioni

article

11.13 : RIboenzimi

Ulteriori Ruoli del DNA

10.7K Visualizzazioni

article

11.14 : Le condizioni sulla terra primordiale

Ulteriori Ruoli del DNA

2.1K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati