Accedi

Overview

Epoxides result fromalkene oxidation, which can be achieved by a) air, b) peroxy acids, c) hypochlorous acids, and d) halohydrin cyclization.

Epoxidation with Peroxy Acids

Epoxidation of alkenes via oxidation with peroxy acids involves the conversion of a carbon–carbon double bond to an epoxide using the oxidizing agentmeta-chloroperoxybenzoic acid, commonly known as MCPBA. Since the O–O bond of peroxy acids is very weak, the addition of electrophilic oxygen of peroxy acids to alkenes occurs with ease, thereby following syn addition. Hence, the epoxides are produced with the retention of the alkene configuration.

Epoxidation via Air Oxidation

Although peroxy-mediated epoxidation is the most common method for alkene oxidation, ethylene oxide is synthesized at the industrial scale via air oxidation by treating a mixture of ethylene and air in the presence of a silver catalyst.

Cyclization of Halohydrins

Cyclization of halohydrins of alkenes in the presence of a base also yields epoxides, and the reaction follows the SN2 substitution mechanism. Hence, the nucleophile—the oxygen anion—and the leaving group—the chloride ion—must orient anti to each other in the transition state to make the halohydrins cyclization feasible.

Figure1

In noncyclic halohydrins, this anti-relationship is achieved by an internal rotation. For instance, in 1-chloro-2-methyl-2-propanol, shown in Figure 1, the hydroxyl and the chloro group are not oriented anti to each other. To achieve the anti-relationship, the carbon-bearing chloro group undergoes an internal rotation, thereby making the nucleophile attack—from the backside of the C–X bond—and the ejection of the leaving group feasible. Thus, the epoxides formed via halohydrin cyclization also retain the alkene configuration.

Similarly, the cyclic halohydrins must undergo conformational changes to achieve the anti-relationship. For example, the halohydrin of cyclohexane, shown in Figure 2, undergoes a conformational change from diequatorial to diaxial to successfully forman epoxide.

Figure2

Tags

EpoxidesAlkene OxidationPeroxy AcidsMCPBAAir OxidationHalohydrin CyclizationSN2 SubstitutionConformational Changes

Dal capitolo 11:

article

Now Playing

11.9 : Preparation of Epoxides

Eteri, epossidi e solfuri

7.2K Visualizzazioni

article

11.1 : Struttura e nomenclatura degli eteri

Eteri, epossidi e solfuri

10.8K Visualizzazioni

article

11.2 : Proprietà fisiche degli eteri

Eteri, epossidi e solfuri

6.8K Visualizzazioni

article

11.3 : Dagli alcoli agli eteri: disidratazione degli alcoli e sintesi di Williamson degli eteri

Eteri, epossidi e solfuri

9.9K Visualizzazioni

article

11.4 : Eteri da alcheni: addizione alcolica e alcossimercurazione-demercurazione

Eteri, epossidi e solfuri

7.6K Visualizzazioni

article

11.5 : Da eteri ad alogenuri alchilici: scissione acido-catalizzata

Eteri, epossidi e solfuri

5.5K Visualizzazioni

article

11.6 : Autossidazione di eteri a perossidi e idroperossidi

Eteri, epossidi e solfuri

7.1K Visualizzazioni

article

11.7 : Gli eteri corona

Eteri, epossidi e solfuri

5.0K Visualizzazioni

article

11.8 : Struttura e nomenclatura degli epossidi

Eteri, epossidi e solfuri

6.2K Visualizzazioni

article

11.10 : Epossidazione di Sharpless

Eteri, epossidi e solfuri

3.7K Visualizzazioni

article

11.11 : Apertura dell'anello degli epossidi acido-catalizzata

Eteri, epossidi e solfuri

6.9K Visualizzazioni

article

11.12 : Apertura dell'anello degli epossidi base-catalizzata

Eteri, epossidi e solfuri

8.1K Visualizzazioni

article

11.13 : Struttura e nomenclatura di tioli e solfuri

Eteri, epossidi e solfuri

4.5K Visualizzazioni

article

11.14 : Preparazione e reazioni dei tioli

Eteri, epossidi e solfuri

5.8K Visualizzazioni

article

11.15 : Preparazione e reazioni dei solfuri

Eteri, epossidi e solfuri

4.6K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati