Accedi

The moment of inertia of an object depends on its axis of rotation. Consider a barbell consisting of two masses attached to the ends of a rod. The masses at the end can be considered point masses, and the rod can be assumed to have negligible weight. The moment of inertia of the barbell can be calculated using the mathematical definition of the moment of inertia once the system's rotation axis is decided. Suppose the point masses mare fixed at a distance R from the center of the rod, the moment of inertia about an axis passing through its center is equal to 2mR2 and about an axis at one of its ends, it is 4mR2. This suggests that it is twice as hard to rotate the barbell about the end than about its center.

The definition of the moment of inertia of a rigid body is derived from considering each element of mass at a fixed distance from the axis of rotation. However, for a rigid body built of continuous mass, each element is infinitesimal. Hence, the summation is replaced by the integral over infinitesimal mass elements.

In special cases, when the mass is distributed evenly throughout the object of interest, the mass element can be written as density multiplied by the element of length, area, or volume and other relevant constants. For example, imagine a thin uniform rod with mass uniformly distributed throughout its length. By relating the infinitesimal mass element with an infinitesimal length element via the constant linear mass density, its moment of inertia can be calculated. It is found that a uniform rod's moment of inertia about an axis fixed at its end is four times more than its moment of inertia about an axis passing through its center.

This text is adapted from Openstax, University Physics Volume 1, Section 10.5: Calculating Moments of Inertia.

Tags
Moment Of InertiaAxis Of RotationBarbellPoint MassesRodCenter Of MassContinuous MassRigid BodyDensityLinear Mass DensityUniform Rod

Dal capitolo 10:

article

Now Playing

10.9 : Moment of Inertia: Calculations

Rotation and Rigid Bodies

6.4K Visualizzazioni

article

10.1 : Velocità angolare e spostamento

Rotation and Rigid Bodies

11.3K Visualizzazioni

article

10.2 : Velocità angolare e accelerazione

Rotation and Rigid Bodies

8.4K Visualizzazioni

article

10.3 : Rotazione con accelerazione angolare costante - I

Rotation and Rigid Bodies

6.4K Visualizzazioni

article

10.4 : Rotazione con accelerazione angolare costante - II

Rotation and Rigid Bodies

5.7K Visualizzazioni

article

10.5 : Relazione tra quantità angolari e lineari - I

Rotation and Rigid Bodies

6.2K Visualizzazioni

article

10.6 : Relazione tra grandezze angolari e lineari - II

Rotation and Rigid Bodies

5.1K Visualizzazioni

article

10.7 : Momento d'inerzia

Rotation and Rigid Bodies

8.5K Visualizzazioni

article

10.8 : Momento d'inerzia ed energia cinetica rotazionale

Rotation and Rigid Bodies

6.9K Visualizzazioni

article

10.10 : Momento d'inerzia degli oggetti composti

Rotation and Rigid Bodies

5.8K Visualizzazioni

article

10.11 : Teorema dell'asse parallelo

Rotation and Rigid Bodies

6.1K Visualizzazioni

article

10.12 : Teorema dell'asse perpendicolare

Rotation and Rigid Bodies

2.4K Visualizzazioni

article

10.13 : Trasformazione vettoriale in sistemi di coordinate rotanti

Rotation and Rigid Bodies

1.2K Visualizzazioni

article

10.14 : Forza di Coriolis

Rotation and Rigid Bodies

2.6K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati