JoVE Logo

Accedi

13.23 : Poiseuille's Law and Reynolds Number

Any fluid in a horizontal tube can flow due to pressure differences—fluid flows from high to low pressure. The flow rate (Q) is the ratio of pressure difference and resistance through a horizontal tube. The greater the pressure difference, the higher the flow rate. The flow resistance is expressed as:

Static equilibrium, ΣF=0, ΣM=0, force diagram, mechanical balance illustration, educational physics.

When combined with the flow rate (Q), this relation gives Poiseuille's law for the laminar flow of an incompressible fluid in a tube.

Free electron laser diagram illustrating optical amplification process and light emission pathways.

All factors that affect the flow rate, except pressure, are included in resistance. Resistance depends on the dimensions of the tube and the viscosity of the fluid. Resistance is directly proportional to the length of the tube and inversely proportional to the fourth power of the radius of the tube.

In the case of a non-viscous fluid, the fluid flow is frictionless, and the resistance to flow is zero. This results in the motion of all the layers with the same velocity. In contrast, resistance to fluid flow in viscous fluids is non-zero. In such cases, the speed is greatest for the midstream and decreases towards the edge of the tube. We can see the effect in a Bunsen burner flame.

Flow can be considered to be laminar or turbulent as classified by the Reynolds number. If the Reynolds number is below 2,000, the flow is laminar; if it is greater than 3,000, the flow is turbulent. Flow is considered to be unstable and may show chaotic behavior if the Reynolds number falls between 2,000 and 3,000. Unstable flow indicates that it is initially laminar, but due to obstructions or surface roughness, the flow can become turbulent, and it may oscillate randomly between being laminar and turbulent. Here, a tiny variation in one factor can have an exaggerated (or nonlinear) effect on a system, thus showing chaotic behavior.

This text is adapted from Openstax, University Physics Volume 1, Section 14.7: Viscosity and Turbulence.

Tags

Poiseuille s LawReynolds NumberFluid FlowPressure DifferenceFlow RateResistanceLaminar FlowIncompressible FluidViscosityTurbulent FlowFlow StabilityChaotic BehaviorNon viscous FluidFrictionless FlowBunsen Burner Flame

Dal capitolo 13:

article

Now Playing

13.23 : Poiseuille's Law and Reynolds Number

Fluid Mechanics

6.2K Visualizzazioni

article

13.1 : Caratteristiche dei fluidi

Fluid Mechanics

3.7K Visualizzazioni

article

13.2 : Densità

Fluid Mechanics

14.5K Visualizzazioni

article

13.3 : Pressione dei fluidi

Fluid Mechanics

15.3K Visualizzazioni

article

13.4 : Variazione della pressione atmosferica

Fluid Mechanics

2.0K Visualizzazioni

article

13.5 : Legge di Pascal

Fluid Mechanics

8.0K Visualizzazioni

article

13.6 : Applicazione della legge di Pascal

Fluid Mechanics

7.9K Visualizzazioni

article

13.7 : Manometri

Fluid Mechanics

3.0K Visualizzazioni

article

13.8 : Galleggiabilità

Fluid Mechanics

9.1K Visualizzazioni

article

13.9 : Principio di Archimede

Fluid Mechanics

7.6K Visualizzazioni

article

13.10 : Densità e principio di Archimede

Fluid Mechanics

6.5K Visualizzazioni

article

13.11 : Fluidi acceleranti

Fluid Mechanics

989 Visualizzazioni

article

13.12 : Tensione superficiale ed energia superficiale

Fluid Mechanics

1.3K Visualizzazioni

article

13.13 : Eccesso di pressione all'interno di una goccia e di una bolla

Fluid Mechanics

1.6K Visualizzazioni

article

13.14 : Angolo di contatto

Fluid Mechanics

11.6K Visualizzazioni

See More

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati