Accedi

Gauss's law helps determine electric fields even though the law is not directly about electric fields but electric flux. In situations with certain symmetries (spherical, cylindrical, or planar) in the charge distribution, the electric field can be deduced based on the knowledge of the electric flux. In these systems, we can find a Gaussian surface S over which the electric field has a constant magnitude. Furthermore, suppose the electric field is parallel (or antiparallel) to the area vector everywhere on the surface. In that case, the flux integral transforms into the product of the electric field magnitude and an appropriate area. Thus, the equation representing Gauss's law simplifies to the following:

Equation1

When this flux is used in the expression for Gauss's law, an algebraic equation is obtained, which can be solved to find the magnitude of the electric field.

To summarize, when applying Gauss's law to solve a problem, the following steps are followed:

  1. Identify the spatial symmetry of the charge distribution. This is an important first step that allows the choice of the appropriate Gaussian surface. For example, an isolated point charge has spherical symmetry, whereas an infinite line of charge has cylindrical symmetry.
  2. Choose a Gaussian surface with the same symmetry as the charge distribution, and identify its consequences. With this choice, the electric flux can be easily determined over the Gaussian surface.
  3. Evaluate the flux through the surface. The symmetry of the Gaussian surface allows for factoring the electric field outside the integral.
  4. Determine the amount of charge enclosed by the Gaussian surface. This is an evaluation of the right-hand side of the equation representing Gauss's law. It is often necessary to perform an integration to obtain the net enclosed charge.
  5. Evaluate the electric field of the charge distribution.
Tags
Gauss s LawElectric FieldsElectric FluxGaussian SurfaceCharge DistributionSpatial SymmetryFlux IntegralElectric Field MagnitudeAlgebraic EquationNet Enclosed ChargeIntegrationProblem solving Steps

Dal capitolo 23:

article

Now Playing

23.4 : Gauss's Law: Problem-Solving

Gauss's Law

1.5K Visualizzazioni

article

23.1 : Flusso elettrico

Gauss's Law

7.3K Visualizzazioni

article

23.2 : Calcolo del flusso elettrico

Gauss's Law

1.6K Visualizzazioni

article

23.3 : Legge di Gauss

Gauss's Law

6.7K Visualizzazioni

article

23.5 : Legge di Gauss: Simmetria sferica

Gauss's Law

7.0K Visualizzazioni

article

23.6 : Legge di Gauss: simmetria cilindrica

Gauss's Law

7.1K Visualizzazioni

article

23.7 : Legge di Gauss: Simmetria planare

Gauss's Law

7.5K Visualizzazioni

article

23.8 : Campo elettrico all'interno di un conduttore

Gauss's Law

5.7K Visualizzazioni

article

23.9 : Carica su un conduttore

Gauss's Law

4.3K Visualizzazioni

article

23.10 : Campo elettrico sulla superficie di un conduttore

Gauss's Law

4.4K Visualizzazioni

article

23.11 : Campo elettrico di una sfera non uniformemente caricata

Gauss's Law

1.3K Visualizzazioni

article

23.12 : Campo elettrico di piastre conduttrici parallele

Gauss's Law

725 Visualizzazioni

article

23.13 : Divergenza e curvatura del campo elettrico

Gauss's Law

5.0K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati