JoVE Logo

Accedi

7.8 : Relation Between the Distributed Load and Shear

Understanding the relationship between the distributed load and shear force in structural analysis is crucial for analyzing beams subjected to various loading conditions. Consider the case of a beam experiencing a distributed load, two concentrated loads, and a couple moment.

Static equilibrium diagram with forces F1, F2; equations ΔF=w(x)Δx, Δk=k(Δx); spring load setup.

The connection between the shear force and the distributed load for the given case can be established following the given procedure. First, consider an elemental section on the beam free from any concentrated load or couple moment. We can draw a free-body diagram to analyze the forces acting on this section. The diagram will consist of the distributed load acting along the length of the beam, the shear force V(x) acting on the right-hand side of the section, and an incremental shear force dV added to maintain the equilibrium.

To maintain equilibrium in the vertical direction, the shear force acting on the right-hand side of the section should be incremented by a small and finite amount, ΔV. The resultant force of the distributed load, w(xx, acts at a fractional distance from the right end of the section.

Using the equation of equilibrium for vertical force, the following relation between shear and load can be obtained:

Change in potential energy formula, ΔV=-w(x)Δx, static equilibrium, concept diagram.

Next, we will divide both sides of the equation by Δx and let Δx approach zero:

Static equilibrium equation \( \frac{dV}{dx} = -w(x) \), formula for load distribution analysis.

This equation shows that the slope of the shear force is equal to the distributed load intensity.

Finally, we can rearrange the equation and integrate the distributed load over the elemental section between two arbitrary points, Q and R:

Static equilibrium equation: VR-VQ=-∫w(x)dx, integral formula for physics, mathematics.

This integral equation demonstrates the relationship between the change in shear force and the area under the load curve. The difference in shear force between points Q and R equals the area under the distributed load curve between these two points.

Tags

Distributed LoadShear ForceStructural AnalysisBeam Loading ConditionsFree body DiagramEquilibriumIncremental Shear ForceVertical Force EquilibriumShear Force SlopeLoad IntensityIntegral EquationLoad Curve Area

Dal capitolo 7:

article

Now Playing

7.8 : Relation Between the Distributed Load and Shear

Internal Forces

584 Visualizzazioni

article

7.1 : Convenzione dei segni

Internal Forces

1.8K Visualizzazioni

article

7.2 : Forza normale e di taglio

Internal Forces

2.0K Visualizzazioni

article

7.3 : Momenti flettenti e torsionali

Internal Forces

3.4K Visualizzazioni

article

7.4 : Carichi interni negli elementi strutturali: risoluzione dei problemi

Internal Forces

1.2K Visualizzazioni

article

7.5 : Travi

Internal Forces

1.3K Visualizzazioni

article

7.6 : Diagramma di taglio

Internal Forces

712 Visualizzazioni

article

7.7 : Diagramma del momento flettente

Internal Forces

952 Visualizzazioni

article

7.9 : Relazione tra il taglio e il momento flettente

Internal Forces

944 Visualizzazioni

article

7.10 : Diagramma del taglio e del momento flettente: risoluzione dei problemi

Internal Forces

1.2K Visualizzazioni

article

7.11 : Cavo sottoposto a carichi concentrati

Internal Forces

767 Visualizzazioni

article

7.12 : Cavo sottoposto a un carico distribuito

Internal Forces

614 Visualizzazioni

article

7.13 : Cavo sottoposto al proprio peso

Internal Forces

408 Visualizzazioni

article

7.14 : Cavo: risoluzione dei problemi

Internal Forces

299 Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati