Method Article
Una descrizione della formazione di un polimero microarray utilizzando un chip tecnica di fotopolimerizzazione. La caratterizzazione superficiale elevata velocità usando la microscopia a forza atomica, misure di angolo di contatto acqua, raggi X e spettroscopia di fotoelettroni tempo di spettrometria di massa di ioni secondari volo e un saggio di adesione cellulare è anche descritto.
Miscelazione è una operazione unitaria che combina due o più componenti in una miscela omogenea. Questo lavoro comporta la miscelazione due flussi viscosi liquidi con un filtro in linea miscelatore statico. Il miscelatore è un disegno split-e-ricombinare che impiega flusso di taglio estensionale e per aumentare il contatto interfacciale tra i componenti. A split-e-ricombinare prototipo (SAR) mixer è stato costruito allineando una serie di sottili laser-cut poli (metilmetacrilato) (PMMA) piastre trattenuto in un tubo in PVC. Miscelazione in questo dispositivo è illustrato nella fotografia in Fig. 1. Colorante rosso è stato aggiunto ad una porzione del fluido di prova e usato come componente minore miscelate in principali (non colorato) componente. All'ingresso del mixer, lo strato di fluido iniettato tracciante è diviso in due strati che scorre attraverso la sezione di miscelazione. Su ciascuna sezione successiva miscelazione, il numero di strati orizzontali è duplicato. In ultima analisi, il singolo flusso di colorante sia uniformemente distribuito, throughout la sezione trasversale del dispositivo.
Utilizzo di un fluido non newtoniano prova del 0,2% Carbopol e un fluido tracciante drogato di composizione analoga, mescolando nell'unità viene visualizzato mediante risonanza magnetica (MRI). La risonanza magnetica è una sonda molto potente sperimentale di chimica molecolare e ambiente fisico così come la struttura del campione sulle scale di lunghezza da micron a centimetri. Questa sensibilità ha portato a un'ampia applicazione di queste tecniche per caratterizzare fisiche, chimiche e / o biologiche di materiali che vanno dagli umani agli alimenti al supporto poroso 1, 2. Le attrezzature e le condizioni usato qui sono adatte per liquidi immagini contengono quantità sostanziali di NMR mobile 1 H come l'acqua normale e liquidi organici compresi gli oli. Tradizionalmente MRI ha utilizzato magneti super-conduttori che non sono adatti per ambienti industriali e non trasferibili all'interno di un laboratorio (Fig. 2). I recenti progressin tecnologia dei magneti hanno permesso la costruzione di grande volume magneti industriali compatibili adatti per i flussi di processo di imaging. Qui, la RM fornisce concentrazioni di componenti spazialmente risolte nei diversi siti assiali durante il processo di miscelazione. Questo documento di lavoro in tempo reale la miscelazione dei fluidi ad alta viscosità con distributiva miscelazione con una domanda di prodotti per la cura personale.
1. Preparazione di bassa fouling sfondo
2. Preparazione della soluzione di monomero
3. Polymer microarray formazione
La procedura tipica per la formazione del polimero microarray è illustrato schematicamente nella figura 1.
4. Elevata superficie di caratterizzazione throughput (HTSC)
Uno schema generale delle tecniche HTSC è mostrato in Figura 3. Centrale al automatizzato, approccio throughput elevato è l'allineamento del microarray polimero con l'apparato caratterizzazione. In tutti i casi, questo è realizzato utilizzando una telecamera che fornisce una vista dall'alto della matrice. Inizialmente, la matrice viene ruotata per allinearsi con il movimento XY della fase. Una macchia angolo della matrice viene quindi collocati e coordinate specifiche. La posizione di ciascun punto polimero può essere previsto utilizzando le dimensioni della matrice.
5. Prova batterica
L'array può essere esposto a molti saggi biologici diversi tra cui l'attaccamento e la proliferazione delle cellule staminali, altri tipi di cellule e batteri 3,10,4. Qui descriviamo una prova batterica allegato, che è mostrato schematicamente in figura 4.
6. Risultati rappresentativi
Le condizioni di stampa sono stati ottimizzati per stampare più alta qualità microarrays polimero. L'umidità deve essere mantenuta tra il 30-40%. La delaminazione di macchie di polimero in ambienti acquosi è stata osservata frequentemente per le matrici stampate con umidità inferiore al 30%, suggerendo che tale umidità è insufficiente a gonfiarsi strato pHEMA e consentire l'intrappolamento fisico del polimero al substrato. L'umidità può essere aumentata ulteriormente a modificare il diametro dei punti di polimero, ma questo dipende dalla chimica monomero. Per esempio, dove i volumi uguali di soluzione di polimerizzazione sono stati stampati e l'umidità è stata aumentata da 40 a 80% del diametro di punto diminuito da 430 micron a 370 micron per un monomero contenente idrofilo glicole etilenico pari frazione di volume, mentre per un monomer contenente una struttura di carbonio idrofobo alifatico l'anello del diametro dello spot è aumentato da 290 micron a 350 micron (Figura 5).
Il grado di polimerizzazione può essere monitorato usando spettroscopia Raman per misurare il C = spostamento Raman C che viene rilevato a 1.640 cm-1, che deve essere normalizzati con lo spostamento C = O Raman a 1720 cm -1. Gli spettri Raman è stata misurata per macchie polimero polimerizzate per esposizione UV varia (Figura 6). Il C = C: C = rapporto O diminuito esposizione UV aumentata da 0 a 50 s, dopo di alcun ulteriore riduzione del C = C: C = rapporto O è stato osservato con irradiazione UV ulteriormente (Figura 6). Spettri Raman sono stati misurati per macchie polimero polimerizzate vario livello di O 2 e la Figura 7A C = C spostamento Raman è stato osservato come il livello di O 2 è stato diminuito a 2000 ppm, tuttavia alcuna ulteriore riduzione è stata osservata per un livello 2 O sotto di questo ( ). Spettroscopia Raman anche dimostrato la capacità di estrazione s vuototep per rimuovere monomero non polimerizzato. Prima di aspirazione del C = C spostamento Raman era maggiore per il polimero polimerizzato a 3300 ppm rispetto al 2000 ppm (Figura 7A), tuttavia, dopo estrazione sotto vuoto l'altezza dello spostamento Raman è indistinguibile (Figura 7B), suggerendo tutte monomero non polimerizzato è stato rimosso durante la fase di aspirazione. Per riassumere, condizioni di polimerizzazione includono una umidità del 30-40%, esposizione UV maggiore di 50 s ad un livello 2 O inferiore a 2000 ppm, con un passo di estrazione a vuoto dopo la stampa per 7 giorni.
Dopo estrazione stampa e vuoto il successo della polimerizzazione di macchie polimero può essere valutata mediante microscopia ottica semplice per identificare e morfologie piatte anomale. Tipicamente, macchie dovrebbe apparire circolare uniforme, come mostrato nella Figura 8 sulla sinistra. La probabile causa di un cambiamento nella geometria è una spina danneggiata o sporca. Per un piccolo numero di combinazioni di monomero abbiamo osservato macchie deformi, e perSEMPIO un punto centrale con un satellite di piccole macchie, come mostrato nella figura 8 a destra, o una forma uovo fritto in cui vi è un punto centrale sulla parte superiore del grande, piatta spot. Questo può essere causato da una separazione di fase prima della stampa relative a differenze nella tensione viscosità, idrofilia, volatilità o superficie dei monomeri e suggerisce che la combinazione monomero non è compatibile con questo formato. Mappatura chimica supplementare di macchie polimero mediante tecniche come ToF-SIMS è anche un importante e talvolta necessario passo di controllo di qualità per determinare la distribuzione di chimiche dei materiali attraverso i punti e la matrice. Questa tecnica può identificare diffusione eccessiva di alcuni materiali non visibili al microscopio ottico e identificare separazione di fase entro macchie polimero individuali.
Figura 1. Schema raffigurante le varie fasi coinvolte nella formazione di un polymer posto.
Figura 2. Schema della metodologia di stampa pin coinvolge inizialmente caricando il perno con monomero in una piastra sorgente e poi depositare il monomero su un substrato facendo contatto. Il perno è controllato da un braccio robotico XYZ. L'inserto mostra una tipica immagine di autofluorescenza di un array dopo la produzione.
Figura 3. Schema evidenziando le tecniche associate HTSC e anche biotest applicata allo studio di microarrays polimero.
Figura 4. Schema del dosaggio attacco batterico.
Figura 5. PDiametro punto olymer stampato umidità varia per due differenti monomeri: 4-tert-butilcicloesil acrilato e di (etilenglicole) metacrilato etere etilico.
Figura 6. Il rapporto tra l'intensità Raman per il C = C spostamento Raman a 1.640 cm -1 e C = O spostamento Raman a 1720 cm -1 da macchie di polimero di acrilato di 4-tert-butilcicloesil con esposizione UV varia. Le barre di errore pari ad una deviazione standard (n = 3).
Figura 7. Gli spettri Raman misurata per macchie polimero di acrilato di 4-tert-butilcicloesil stampata a vari livelli di O 2, indicata a sinistra di ogni spettro, (A) prima e (B) dopo aspirazione. Il rapporto tra l'intensità Raman per il C = C spostamento Raman a 1.640 cm -1 e C = O spostamento Raman a 1720 cm -1 viene mostrato a destra di ciascuno spettro.
Figura 8. Un'immagine microscopio ottico di due macchie polimero. Posto a sinistra mostra un punto ben formato, mentre il punto sulla destra è un esempio di uno spot contenente una distribuzione molto uniforme di monomero. La barra della scala è di 500 micron.
Microarrays polimeri sono stati utilizzati con successo per la scoperta di nuovi materiali da centinaia di screening del romanzo di polimero in un saggio biologico e di individuare "hit" materiali che possono successivamente essere scalata fino a dispositivi utili. In questo caso, la caratterizzazione superficiale descritto può essere impiegato dopo il saggio biologico ed esclusivamente sui "colpo" materiali per studiare tali materiali in dettaglio. Questa strategia può essere di interesse se HTSC non è disponibile per l'impiego di questo approccio sperimentale. Tuttavia, per utilizzare completamente microarrays polimeriche per studiare le interazioni materiale biologico-l'intera matrice di centinaia di materiali dovrebbero essere analizzati prima saggi biologici utilizzando metodologie HTSC, che possono successivamente essere utilizzati per osservare generali struttura-funzione tendenze.
Contatto stampa si basa sul perno metallico scorrevole su e giù liberamente nel supporto del perno. Supporto del perno e il perno la pulizia è fondamentale è garantire pTAMPA avviene con successo e deve essere rigorosamente effettuata. Prima di iniziare una stampa eseguire il movimento appropriato del perno all'interno del supporto del perno può essere testato eseguendo una corsa a secco, senza monomeri presenti. La fase di pulizia deve continuare fino a quando il perno di movimento si ottiene riproducibile.
Pensiero considerevole dovrebbe andare nella progettazione della miscela monomerica. Per produrre facilmente una libreria combinatoria di polimeri, centinaia di copolimeri sono formati mescolando un paio di monomeri in rapporti differenti. Tipicamente si producono 576 biblioteche come questa forma una matrice x 24 24, che è adatto per la geometria di un vetrino. Per produrre una libreria combinatoria che esplora lo spazio più combinatoria il modo più semplice per miscelare 24 monomeri a coppie in rapporto 2:1. In alternativa, l'inclusione di gradienti composizionali all'interno della matrice sono utili per consentire le osservazioni di tendenze, che consente composizioni monomeriche ottimali per essere dDeterminati. Come esempio di questo 22 monomeri possono essere usati come primo componente in un co-monomero miscela che viene sequenzialmente diluito con 1 di 6 secondi componenti. Se 5 diluizioni sono utilizzati, per esempio mescolando i componenti primo e secondo a rapporti di 90:10, 75:25, 50:50, 25:75 e 10:90, ciò comporterebbe 488 soluzioni copolimero uniche. Per portare il totale a 576, replicati dei omopolimeri dei monomeri utilizzati possono essere introdotte, che spesso è un campione di riferimento importante. 576 soluzioni di monomeri devono essere distribuiti in 2 384 pozzetti. Per la programmazione del robot è più facile avere due identiche piastre in termini di posizione dei monomeri, quindi, le soluzioni di monomero deve essere diviso equamente tra le due piastre.
Una quantità significativa di tempo può essere salvato nella preparazione delle piastre di origine con l'uso di pipette multicanale, e la progettazione di piastre sorgente deve essere determinata in modo da sfruttare l'uso delle pipette multicanale.
Per raggiungere HTSC automatizzata delle matrici posizione spot devono essere correttamente allineata con l'apparato caratterizzazione. In genere l'altezza di un array acrilato è di 500-1000 micron e il diametro dello spot polimero è di 300 micron. Fasi più XY hanno una risoluzione inferiore a 10 micron, quindi vi è la tolleranza adeguata per l'apparato caratterizzazione superficie di accedere correttamente le posizioni dell'array volta le dimensioni corrette sono state input al software di posizionamento del campione. La limitazione al posizionamento automatico è infatti la stampa accurata della matrice. Per garantire una stampa accurata è importante per impedire il movimento del substrato in fase di stampa sia con aspirazione sotto vuoto o morsetti a molla con diapositive dimensioni adeguate (si noti che sia una degli Stati Uniti e dimensioni delle diapositive standard europeo esiste).
ToF-SIMS è una tecnica estremamente sensibile superficie che si osservano qualsiasi contaminazione su campioni. Quindi, massima cura deve essere presaper evitare il contatto con la superficie. I campioni devono essere manipolato, ma la superficie di interesse non a contatto con, con i guanti puliti (preferibilmente in polietilene) e con una pinzetta appena puliti. Noi di solito lavare con cloroformio ed esano. Conservazione del campione prima della misura è fatto meglio in un porta-campioni che contiene le diapositive parte, ad esempio il 5 portavetrini o 20 portavetrini.
Gli array sono progettati specificamente per essere compatibile con molti formati di saggio biologico e display, che è il substrato utilizzato è un vetrino da microscopio ideale per scanner fluorescenza e microscopi luce. Questo significa che il formato è adatto a esplorare molti materiali biologici interazioni. Inoltre, il formato consente centinaia di materiali per essere proiettato in parallelo. In questo modo molti materiali più essere sottoposti a screening rispetto ai metodi tradizionali con cui viene proiettato ogni nuovo materiale chimica singolarmente. La maggiore portata di materiale biologico-interazioni permettonos per la delucidazione dei meccanismi di interazioni di superficie biologiche, oltre a trovare il materiale ottimale per una data applicazione.
Non abbiamo nulla da rivelare.
Il finanziamento del Wellcome Trust è gentilmente riconosciuta (codice di autorizzazione del 085245/Z/08/Z). Nanotecnologie Nottingham e Centro nanoscienza è gentilmente riconosciuta per dare l'accesso al sistema Raman e per lo sviluppo Est Midlands Agenzia per il finanziamento di questa apparecchiatura.
Name | Company | Catalog Number | Comments |
Nome del reagente / attrezzature | Azienda | Catalogo / Numero del modello | |
Epossidiche diapositive | Genetix | K2652 | |
Contatto stampa | Biodot | XYZ3060 piattaforma | |
Metallo perno | Arrayit | 946MP6B | |
ToF-SIMS strumento | ION-TOF | ||
XPS strumento | Kratos | ||
WCA apparecchi | Krüss | DSA 100 | |
AFM | Bruker | Dimension Icon | |
RPMI-1640 coltura cellulare multimediale | Sigma-Aldrich | R0883 | |
SYTO17 | Invitrogen | S-7579 |
Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE
Richiedi AutorizzazioneThis article has been published
Video Coming Soon