È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.
Method Article
Vi presentiamo un nuovo idrogel di poliacrilamide, chiamato idrossi-PAAM, che permette un legame diretto di proteine ECM con un costo minimo o esperienza. La combinazione di idrossi-PAAM Idrogel con stampa microcontact facilita il controllo indipendente di molti spunti del microambiente naturale delle cellule per studiare mechanostransduction cellulare.
E 'ormai ben noto che molte funzioni cellulari sono regolate da interazioni delle cellule con spunti fisico-chimiche e meccaniche della loro matrice extracellulare (ECM) ambiente. Le cellule eucariotiche sentono costantemente il loro microambiente locale attraverso meccanosensori superficie di trasdurre i cambiamenti fisici di ECM in segnali biochimici, e integrare questi segnali per raggiungere specifici cambiamenti nell'espressione genica. È interessante notare che i parametri fisico-chimiche e meccaniche della coppia ECM lattina con l'altro per regolare destino cellulare. Pertanto, una chiave per comprendere meccanotrasduzione è quello di disaccoppiare il contributo relativo di spunti ECM sulle funzioni cellulari.
Qui vi presentiamo un protocollo dettagliato sperimentale per generare rapidamente e facilmente idrogel biologicamente rilevanti per la messa a punto indipendente di spunti meccanotrasduzione in vitro. Noi idrogel di poliacrilamide modificati chimicamente (PAAM) per superare i loro intrinsecamente non ADHESive proprietà incorporando monomeri di acrilammide idrossile-funzionalizzati durante la polimerizzazione. Abbiamo ottenuto un romanzo PAAM idrogel, chiamato idrossi-PAAM, che consente l'immobilizzazione di qualsiasi natura desiderato di proteine ECM. La combinazione di idrossi-Paam Idrogel con stampa microcontact permette di controllare indipendentemente la morfologia delle cellule singole, la rigidità della matrice, la natura e la densità delle proteine ECM. Mettiamo a disposizione un metodo semplice e rapido che può essere impostato in ogni laboratorio di biologia per studiare nei processi meccanotrasduzione cellule in vitro. Abbiamo convalidare questo romanzo piattaforma bidimensionale conducendo esperimenti sulle cellule endoteliali che dimostrano un accoppiamento meccanico tra ECM rigidità e il nucleo.
Molti aspetti del microambiente cellulare locale (ad esempio, la rigidità, dimensione dei pori, la natura delle proteine, o di densità delle cellule-ligando) forniscono una serie coordinata di spunti normativi che controllano processi cellulari come la motilità, proliferazione cellulare, differenziamento, e l'espressione genica. Le modifiche delle proprietà fisico-chimiche dell'ambiente extracellulare possono essere percepiti dalle cellule e causare diverse conseguenze fisiologiche, tra cui la deformazione della polarizzazione cellulare, la migrazione e la differenziazione. Non è chiaro, tuttavia, come le cellule traducono ECM modifiche in segnali bi....
Access restricted. Please log in or start a trial to view this content.
1 Attivazione della superficie di coprioggetto di vetro
Access restricted. Please log in or start a trial to view this content.
Figura 1A presenta la co-polimerizzazione di acrilammide (AAm) e bisacrylamide (bis-AAm) con N-hydroxyethylacrylamide (HEA) monomeri contenenti un ossidrile primario formata da casuale polimerizzazione radicalica una rete idrofila di poliacrilammide con gruppi idrossilici incorporati (idrossi-Paam) . In questo protocollo, un peso di 65 mg di HEA deve essere diluita in un volume di 1 ml di HEPES. Sapendo che la densità di HEA è approssimativamente uguale a uno, assumiamo che si ottiene un volume di lav.......
Access restricted. Please log in or start a trial to view this content.
Molte osservazioni in vitro nella moderna biologia cellulare sono state eseguite su vetrini rigidi, spesso rivestiti con un sottile strato di proteine ECM o peptidi sintetici contenenti la sequenza RGD. Tuttavia, tali substrati di coltura di base non ricapitolano l'intera complessità fisico-chimiche della ECM e quindi non forniscono un modello accurato per lo studio dei processi meccanotrasduzione cellulari. Per affrontare questo problema, vi proponiamo una semplice alternativa a funzionalizzare idro.......
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest declared.
This work was supported by the Belgian National Foundation for Scientific Research (F.R.S.-FNRS) through “MIS Confocal Microscopy”, “Crédit aux Chercheurs” grants and the “Nanomotility FRFC project” (no. 2.4622.11). T.G. doctoral fellowship is supported by the Foundation for Training in Industrial and Agricultural Research (FRIA). The authors gratefully acknowledge Sylvain Desprez for mechanical characterization and Géraldine Circelli for confocal imaging.
....Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
UV/Ozone Photoreactor | Ultra-Violet Products | Model PR-100 | |
Rocking plate | IKAcWerke | Model KS 130 Basic | |
Vortexer | Scientific Industries | Model Vortex Genie2 | |
Vacuum degassing chamber | Applied Vacuum Engineering | DP- 8-KIT | |
Parafilm | Sigma-Aldrich | P7793-1EA | |
Stainless steel forceps with fine tip | Sigma-Aldrich | Z225304-1EA | |
Dressing tissue forceps | Sigma-Aldrich | F4392-1EA | |
Petri dishes in polystyrene | Sigma-Aldrich | P5731-500EA | |
Aluminium foil, thickness 0.5 mm | Sigma-Aldrich | 266574-3.4G | |
Isopore membrane filter (0.2 µm pore size) | Millipore | GTTP Filter code | |
Round glass coverslip (22 mm diameter) | Neuvitro | GG-22 | |
Round glass coverslip (25 mm diameter) | Neuvitro | GG-25 | |
Variable volume micropipette | Sigma-Aldrich | Z114820 | |
Protein microcentrifuge tubes | Sigma-Aldrich | Z666505-100EA | |
Scalpel handles | Sigma-Aldrich | S2896-1EA | |
Scalpel blades | Sigma-Aldrich | S2771-100EA | |
Cell culture flasks (75 cm2) | Sigma-Aldrich | CLS430641 | |
Ultrasonic bath tray, solid (stainless steel) | Sigma-Aldrich | Z613983-1EA | |
Polydimethylsiloxane | Dow Corning | Sylgard 184 silicone elastomer kit | |
Acrylamide (powder) | Sigma-Aldrich | A3553 | |
N,N’-Methylenebis(acrylamide) | Sigma-Aldrich | 146072 | |
N-Hydroxyethylacrylamide | Sigma-Aldrich | 697931 | |
N,N,N’,N’-Tetramethylethylenediamine | Sigma-Aldrich | T9281 | |
Amonium PerSulfate (APS) | Sigma-Aldrich | A3678 | |
3-(Trimetoxysilyl)propyle acrylate | Sigma-Aldrich | 1805 | |
Human Plasma Fibronectin | Millipore | FC010 | |
Laminin from EHS | Sigma-Aldrich | L2020 | |
Sodium hydroxyde | Sigma-Aldrich | 221465-25G | |
Double-distilled water (ddH2O) | |||
Endothelial cell growth medium | Cells Applications | 211K-500 | |
Human Umbilical Vein Endothelial Cells (HUVEC) | Invitrogen | C-003-5C | |
Accutase | PAA laboratories | L11-007 | |
HEPES buffer solution 1 M in H2O | Sigma-Aldrich | 83264-500ML-F | |
Antibiotics-antimycotics | PAA laboratories | P11-002 | |
Phosphate Buffer Saline solution | PAA laboratories | H15-002 | |
Alexa Fluor 488 Phaloidin | Molecular Probes | A12379 | |
Anti-vinculin antibody produced in mouse | Sigma-Aldrich | V9131 | |
Goat anti-mouse antibody-tetramethylrhodamine | Molecular Probes | T-2762 | |
Anti-Fibronectin (rabbit) | Sigma-Aldrich | F3648 | |
Streptavidin | Sigma-Aldrich | 41469 | |
Anti-Laminin antibody (rabbit) | Sigma-Aldrich | L9393 | |
Anti-rabbit IgG-FITC | Sigma-Aldrich | F7512 | |
Trypsin-EDTA solution | Sigma-Aldrich | T3924-100ML | |
Absolute ethanol | Sigma-Aldrich | 459844-2.5L |
Access restricted. Please log in or start a trial to view this content.
Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE
Richiedi AutorizzazioneThis article has been published
Video Coming Soon