È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.
Method Article
Un dispositivo di co-flusso di inversione di fase è dimostrato per generare goccioline ad alta viscosità monodispersi sopra 1 Pas, che è difficile da realizzare in gocciolina microfluidica.
La generazione di monodisperse goccioline ad alta viscosità è sempre stata una sfida in gocciolina microfluidica. Qui, dimostriamo un dispositivo di co-flusso di inversione di fase per generare goccioline ad alta viscosità uniforme in un fluido a bassa viscosità. Il dispositivo capillare di microfluidica ha una struttura comune di co-flow con relativa uscita di collegamento ad un tubo più largo. Allungata goccioline del liquido a bassa viscosità vengono incapsulate in primo luogo dal fluido ad alta viscosità nella struttura del co flusso. Le goccioline di bassa viscosità allungate scorrono attraverso l'uscita, che è trattata per essere bagnata dal liquido a bassa viscosità, inversione di fase quindi è indotta dall'adesione delle goccioline bassa viscosità fino alla punta dell'uscita, che si traduce nell'inverso successiva incapsulamento del fluido ad alta viscosità. La dimensione delle goccioline ad alta viscosità risultante può essere regolata modificando il rapporto di tasso di flusso del fluido bassa viscosità al fluido ad alta viscosità. Dimostriamo diversi esempi tipici della generazione di goccioline ad alta viscosità con viscosità fino a 11,9 Pas, come soluzione di glicerolo, miele, amido e polimero. Il metodo fornisce un approccio semplice e diretto per generare goccioline ad alta viscosità monodispersi, che possono essere utilizzate in una varietà di applicazioni basate su goccia, come sintesi dei materiali, consegna della droga, l'analisi delle cellule, Bioingegneria e cibo Ingegneria.
La generazione di goccioline sta diventando una tecnologia chiave in una varietà di applicazioni, come ad esempio la consegna della droga, sintesi di materiali, 3D multimateriali, analisi delle cellule e cibo ingegneria1,2,3,4 , 5 , 6. dispositivi microfluidici con incrocio a t7,8, co-flusso1,9, o flusso di messa a fuoco10,11 strutture sono ampiamente usati per generare monodispersi goccioline di emulsione singola. Selezione di una fase continua più viscosa faciliterà la formazione di goccioline12, e la viscosità dei fluidi sia continui e dispersi sono comunemente sotto 0,1 Pas gocciolina microfluidica13. Tuttavia, in molte applicazioni, la fase dispersa può avere una viscosità diverse centinaia di volte superiore a quella dell'acqua, come il glicerolo14, soluzioni contenenti nanoparticelle15, proteine16o polimeri17 , 18 , 19, mentre è difficile raggiungere le goccioline monodispersi direttamente da fluidi ad alta viscosità in una stalla grondante regime11 in dispositivi microfluidici, soprattutto per fluidi con viscosità di η > 1 PA · s14 ,17,18,19. Inoltre, è stato segnalato13,18 che microfluidici tipici metodi per la formazione di goccioline richiedono fluidi con viscosità relativamente bassa e moderata tensione interfacciale per formare goccioline uniformi in un stabile gocciolante regime.
Per una fase dispersa con una viscosità leggermente maggiore di 0,1 Pas, ci sono diversi approcci possibili per facilitare la formazione della gocciolina con tipico incrocio a t, co-flow o flusso di messa a fuoco dispositivi microfluidici: (1) diminuzione della viscosità dei dispersi fase di diluirlo in un solvente volatile11,20; (2) diminuire il rapporto di viscosità dispersi-a-continuo aumentando la viscosità della fase continua1,11; (3) diminuire la portata della fase dispersa su un valore estremamente basso, mantenendo un alto flusso continuo--dispersi tasso rapporto 14,19. Tuttavia, questi approcci non sono pratici per fluidi con viscosità molto più alto, come si abbasserà significativamente il tasso di produzione, aumentando drasticamente il consumo del solvente volatile o la fase continua. In aggiunta, è stato segnalato che alcune soluzioni di polimero ad alta viscosità con η > 1 PA · s ancora non hanno rotto in goccioline con gli approcci di cui sopra17,19.
Ci sono anche parecchi disegni migliorati di dispositivi microfluidici che introducono una terza fase del fluido nel sistema, che facilita la generazione di goccioline ad alta viscosità. Le innovazioni includono: bolle introdotte per tagliare un filo di trivellazione a getto in goccioline21, un fluido chaperoning immiscibile con viscosità moderata, introdotto come la fase intermedia tra la fase di dipsersed e la fase continua18, e microreattori introdotto per generare goccioline ad alta viscosità da due precursori di bassa viscosità21,22,23. Tuttavia, come un più fluido è coinvolto nel processo, il sistema diventa più complicato e i dispositivi di solito lavorano in un regime di flusso molto più ristretto rispetto ai tipici dispositivi per la generazione di goccioline di emulsione singola.
Per generare monodispersi goccioline direttamente da un fluido ad alta viscosità con η > 1 PA · s, metodi di inversione di fase controllata di superficie sono stati studiati24. Come la generazione di goccioline di bassa viscosità è molto più facile di quello di goccioline ad alta viscosità12, allungate bassa viscosità goccioline in una fase di continua ad alta viscosità innanzitutto vengono generate utilizzando una struttura tipica co-flow e quindi sono suddivisi in due al cambiamento di bagnabilità superficiale a valle della struttura co-flow. Il fluido rilasciato di bassa viscosità inversamente incapsula il fluido ad alta viscosità a valle in goccioline affinché inversione di fase è stata completata. Secondo il meccanismo di inversione di fase, possono essere generate goccioline ad alta viscosità monodispersi basato su un dispositivo tipico co-flow, mentre l'uscita del dispositivo co-flow è trattata per essere bagnata dal liquido a bassa viscosità e quindi collegato ad un tubo più largo24 ,25.
1. produrre un dispositivo capillare a co-flusso inversione di fase per osservare il processo di generazione delle goccioline acquose, ad alta viscosità con un diametro di ~ 500 μm.
Nota: Il tubo quadrato esterno usato qui è per scattare immagini del processo di generazione delle goccioline ad alta viscosità. Se non c'è nessun bisogno di prendere le immagini, una versione semplificata del dispositivo può essere fatto secondo passaggio protocollo 2.
2. fare un'inversione di fase, il dispositivo capillare co-Flow per fabbricare acquose ad alta viscosità goccioline con un diametro di ~ 500 μm.
Nota: Il dispositivo fatto qui è una versione semplificata del dispositivo in fase di protocollo 1.
3. fare inversione di fase co-flusso capillare periferica per osservare il processo di generazione di acquose ad alta viscosità goccioline con un diametro di ~ 200 μm.
Nota: Il dispositivo fatto qui è una versione più piccola del dispositivo di passaggio protocollo 1 per rendere più piccole goccioline.
4. osservando la generazione di goccioline di glicerolo in paraffina liquida
Nota: Per scattare le immagini mostrate in figure 1B - D, utilizzare il dispositivo preparato nel passaggio del protocollo 1; per scattare immagini illustrate nella Figura 3, utilizzare il dispositivo preparato nel protocollo passaggio 3.
5. generare e raccogliere le goccioline di glicerolo in paraffina liquida con il dispositivo semplificato preparato nel passaggio 2.
Nota: Questo è per prendere le immagini delle goccioline glicerolo generate in rapporto di tasso di flusso differenti di Qo/Q,we misura la corrispondente dimensione variazione delle gocce per i punti dati nella Figura 2.
6. generare altre goccioline ad alta viscosità in paraffina liquida utilizzando il dispositivo di co-flusso inversione di fase.
Nota: Questo è per le immagini in Figura 4. Tutta la fase di olio a bassa viscosità utilizzata negli esperimenti è lo stesso utilizzato nel passaggio di protocollo 4.1.2.
Un dispositivo di microfluidica capillare con un'inversione di fase, struttura del co-flusso è stato progettato per generare monodispersi acquoso goccioline ad alta viscosità, come mostrato in Figura 1A. Nella Figura 1, la fase acquosa ad alta viscosità è stato il glicerolo, che ha una viscosità di ηw = 1,4 Pas; la fase di olio a bassa viscosità era paraffina liquida, che ha una viscosità di η
Il dispositivo di inversione di fase del co-flusso fornisce un metodo semplice e dritto in avanti per generare goccioline ad alta viscosità monodispersi. Questo dispositivo ha una struttura simile ai comuni dispositivi di co-flow, come la struttura di base del co-flusso è costituito da un tubo interno inserito nel tubo centrale, l'uscita di cui è collegato al tubo di uscita. Tuttavia, ci sono due principali differenze tra il dispositivo di co-flusso inversione di fase e comune co-flusso dispositivo per la generazione ...
Gli autori non hanno nulla a rivelare.
Questo lavoro è stato supportato dal National Natural Science Foundation della Cina (nn. 51420105006 e 51322501). Grazie Daniel per la sua utile discussione sulle idee ad alta viscosità.
Name | Company | Catalog Number | Comments |
VitroTubes Glass Tubing | VitroCom | 8240 | Square - Miniature Hollow Glass Tubing, I.D.=0.4mm, OD=0.8mm |
VitroTubes Glass Tubing | VitroCom | CV2033 | Round - Miniature Hollow Glass Tubing, I.D.=0.2mm, O.D.=0.33mm |
VitroTubes Glass Tubing | VitroCom | CV1017 | Round - Miniature Hollow Glass Tubing, I.D.=0.1mm, O.D.=0.17mm |
VitroTubes Glass Tubing | VitroCom | Q14606 | Square - Miniature Hollow Glass Tubing, I.D.=1.05mm+0.1/-0, OD=1.5mm |
Standard Glass Capillaries | WPI | 1B100-6 | Round - Glass Tubing, I.D.=0.58mm, O.D.=1.00mm |
Glycerol | Sinopharm Chemical Reagent Beijing | 10010618 | |
Paraffin Liquid | Sinopharm Chemical Reagent Beijing | 30139828 | |
Poly(vinyl alcohol), PVA-124 | Sinopharm Chemical Reagent Beijing | 30153084 | |
Span 80 | Sigma-Aldrich | 85548 | |
Starch | Sigma-Aldrich | S9765 | |
Trichloro(octadecyl)silane | Sigma-Aldrich | 104817 | |
Toluidine Blue O | Sigma-Aldrich | T3260 | |
Honey | Chaste tree honey, common food product purchased from supermarket | ||
DEVCON 5 Minute Epoxy | ITW | Epoxy glue | |
Blunt Tip Stainless Steel Dispensing Needles (Luer Lock) | Suzhou Lanbo Needle, China | LTA820050 | 20G x 1/2" |
Tungsten/Carbide Scriber | Ullman | 1830 | For cutting glass tubing |
Microscope Slides | Sail Brand | 7101 | 76.2 mm x 25.4 mm, Thickness 1 - 1.2 mm |
Polyethylene Tubing | Scientific Commodities | BB31695-PE/5 | I.D. = 0.86 mm, O.D. = 1.32 mm |
Syringe Pumps | Longer Pump, China | LSP01-1A | 3 pumps needed for the experiments |
Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE
Richiedi AutorizzazioneThis article has been published
Video Coming Soon