È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.
Method Article
Questo articolo descrive la crescita delle pellicole epitassiali di Mg3N2 e n3N2 sui substrati MgO mediante epitassia molecolare assistita da plasma con gas N2 come fonte di azoto e monitoraggio della crescita ottica.
Questo articolo descrive una procedura per la coltivazione di pellicole Mg3N2 e N2 n da epitassoia del fascio molecolare assistita da plasma (MBE). I film sono coltivati su 100 substrati MgO orientati con gas N2 come fonte di azoto. Vengono descritti il metodo per preparare i substrati e il processo di crescita MBE. L'orientamento e l'ordine cristallino del substrato e della superficie della pellicola sono monitorati dalla diffrazione degli elettroni ad alta energia di riflessione (RHEED) prima e durante la crescita. La riflettività speculare della superficie del campione viene misurata durante la crescita con un laser Ar-ion con una lunghezza d'onda di 488 nm. Adattando la dipendenza temporale della riflettività a un modello matematico, vengono determinati l'indice di rifrazione, il coefficiente di estinzione ottica e il tasso di crescita del film. I flussi metallici sono misurati in modo indipendente in funzione delle temperature delle cellule di effusione utilizzando un monitor a cristalli di quarzo. I tassi di crescita tipici sono pari a 0,028 nm/s a temperature di crescita rispettivamente di 150 e 330 gradi centigradi per i film Mg3N2 e n3N2.
I materiali II3-V2 sono una classe di semiconduttori che hanno ricevuto relativamente poca attenzione da parte della comunità di ricerca dei semiconduttori rispetto ai semiconduttori III-V e II-VI1. I nitrati mg e n, Mg3N2 e n3N2, sono attraenti per le applicazioni dei consumatori perché sono composti da elementi abbondanti e non tossici, rendendoli poco costosi e facili da riciclare a differenza della maggior parte III-V e II-VI semiconduttori composti. Mostrano una struttura cristallina anti-bixbyite simile alla struttura CaF 2, con uno dei sublattici fcc F interpenetranti semi-occupati2,3,4,5. Sono entrambi materiali digap banda diretta6, che li rende adatti per applicazioni ottiche7,8,9. Il gap di banda di Mg3N2 è nello spettro visibile (2,5 eV)10, e il divario di banda di n3N2 è nel vicino infrarosso (1,25 eV)11. Per esplorare le proprietà fisiche di questi materiali e il loro potenziale per le applicazioni di dispositivi elettronici e ottici, è fondamentale ottenere pellicole a cristalli singoli di alta qualità. La maggior parte dei lavori su questi materiali è stata effettuata su polveri o pellicole policristalline realizzate da sputtering reattivi12,13,14,15,16, 17.
L'episale molecolare (MBE) è un metodo ben sviluppato e versatile per la crescita di pellicole semiconduttori composti monocristalli18 che hanno il potenziale per produrre materiali di alta qualità utilizzando un ambiente pulito e fonti elementali ad alta purezza. Nel frattempo, l'azione rapida dell'otturatore MBE consente modifiche a una pellicola su scala atomica e consente un controllo preciso dello spessore. Questo documento riporta la crescita delle pellicole epitassiali Mg3N2 e n3N2 sui substrati MgO da MBE assistiti dal plasma, utilizzando l'alta purezza di N e Mg come fonti di vapore e gas N2 come fonte di azoto.
1. Preparazione del substrato MgO
NOTA: per la crescita della pellicola sottile X 3 N 2 (X ) e Mg sono stati impiegati per la crescita della pellicola sottile X3N2 (X ) e Mg.
2. Funzionamento di VG V80 MBE
3. Caricamento substrato
4. Misurazioni del flusso metallico
5. Plasma di azoto
6. Dispersione della luce laser in situ
7. Determinazione del tasso di crescita
L'oggetto nero nell'insetto in Figura 5B è una fotografia di un come-cresciuto 200 nmn n 3N2 pellicola sottile. Allo stesso modo, l'oggetto giallo nell'insetto in Figura 5C è un come-cresciut2 Mg3N2 pellicola sottile. La pellicola gialla è trasparente nella misura in cui è di facile lettura del testo posto dietro la pellicola10.
Una varietà di considerazioni è coinvolta nella scelta dei substrati e nello stabilire le condizioni di crescita che ottimizzano le proprietà strutturali ed elettroniche dei film. I substrati MgO vengono riscaldati ad alta temperatura nell'aria (1000 gradi centigradi) per rimuovere la contaminazione da carbonio dalla superficie e migliorare l'ordine cristallino nella superficie del substrato. La pulizia ad ultrasuoni in acetone è un buon metodo alternativo per pulire i substrati MgO.
Il pi...
Gli autori non hanno nulla da rivelare.
Questo lavoro è stato sostenuto dal Natural Sciences and Engineering Research Council del Canada.
Name | Company | Catalog Number | Comments |
(100) MgO | University Wafer | 214018 | one side epi-polished |
Acetone | Fisher Chemical | 170239 | 99.8% |
Argon laser | Lexel Laser | 00-137-124 | 488 nm visible wavelength, 350 mW output power |
Chopper | Stanford Research system | SR540 | Max. Frequency: 3.7 kHz |
Lock-in amplifier | Stanford Research system | 37909 | DSP SR810, Max. Frequency: 100 kHz |
Magnesium | UMC | MG6P5 | 99.9999% |
MBE system | VG Semicon | V80H0016-2 SHT 1 | V80H-10 |
Methanol | Alfa Aesar | L30U027 | Semi-grade 99.9% |
Nitrogen | Praxair | 402219501 | 99.998% |
Oxygen | Linde Gas | 200-14-00067 | > 99.9999% |
Plasma source | SVT Associates | SVTA-RF-4.5PBN | PBN, 0.11" Aperture, Specify Length: 12" – 20" |
Si photodiode | Newport | 2718 | 818-UV Enhanced, 200 - 1100 nm |
Zinc | Alfa Aesar | 7440-66-6 | 99.9999% |
Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE
Richiedi AutorizzazioneThis article has been published
Video Coming Soon