JoVE Logo

Accedi

È necessario avere un abbonamento a JoVE per visualizzare questo. Accedi o inizia la tua prova gratuita.

In questo articolo

  • Riepilogo
  • Abstract
  • Introduzione
  • Protocollo
  • Risultati
  • Discussione
  • Divulgazioni
  • Riconoscimenti
  • Materiali
  • Riferimenti
  • Ristampe e Autorizzazioni

Riepilogo

Il manoscritto descrive un protocollo per lo sputtering magnetron a radiofrequenza di film sottili termoelettrici Bi2Te3 e Sb2Te3 su substrati di vetro, che rappresenta un metodo di deposizione affidabile che fornisce una vasta gamma di applicazioni con il potenziale per un ulteriore sviluppo.

Abstract

Attraverso vari studi sui materiali termoelettrici (TE), la configurazione a film sottile offre vantaggi superiori rispetto ai TE sfusi convenzionali, inclusa l'adattabilità a substrati curvi e flessibili. Sono stati esplorati diversi metodi di deposizione di film sottili, ma lo sputtering del magnetron è ancora favorevole grazie alla sua elevata efficienza di deposizione e scalabilità. Pertanto, questo studio mira a fabbricare un film sottile di tellururo di bismuto (Bi2Te3) e tellururo di antimonio (Sb2Te3) tramite il metodo di sputtering del magnetron a radiofrequenza (RF). I film sottili sono stati depositati su substrati di vetro sodico-calcico a temperatura ambiente. I substrati sono stati prima lavati con acqua e sapone, puliti ad ultrasuoni con metanolo, acetone, etanolo e acqua deionizzata per 10 minuti, asciugati con azoto gassoso e piastra riscaldante e infine trattati con ozono UV per 10 minuti per rimuovere i residui prima del processo di rivestimento. È stato utilizzato un bersaglio sputter di Bi2Te3 e Sb2Te3 con gas Argon ed è stato eseguito il pre-sputtering per pulire la superficie del bersaglio. Quindi, alcuni substrati puliti sono stati caricati nella camera di sputtering e la camera è stata aspirata fino a quando la pressione non ha raggiunto 2 x 10-5 Torr. I film sottili sono stati depositati per 60 minuti con flusso di Argon di 4 sccm e potenza RF a 75 W e 30 W rispettivamente per Bi2Te3 e Sb2Te3. Questo metodo ha portato a film sottili Bi2Te3 di tipo n altamente uniformi e Sb2Te3 di tipo p altamente uniformi.

Introduzione

I materiali termoelettrici (TE) hanno suscitato un notevole interesse da parte della ricerca per quanto riguarda la loro capacità di convertire l'energia termica in elettricità attraverso l'effetto Seebeck1 e la refrigerazione tramite il raffreddamento di Peltier2. L'efficienza di conversione del materiale TE è determinata dalla differenza di temperatura tra l'estremità calda della gamba TE e l'estremità fredda. Generalmente, maggiore è la differenza di temperatura, maggiore è la cifra di merito TE e maggiore è la sua efficienza3. TE funziona senza la necessità di parti meccaniche aggiuntive che coinvolgano gas o liquidi nel suo processo, non producendo rifiuti o inquinamento, rendendolo sicuro per l'ambiente e considerato un sistema di raccolta di energia verde.

Il tellururo di bismuto, Bi2Te3 e le sue leghe rimangono la classe più importante di materiale TE. Anche nella produzione di energia termoelettrica, come il recupero del calore di scarto, le leghe Bi2Te3 sono più comunemente utilizzate grazie alla loro efficienza superiore fino a 200 °C4 e rimangono un eccellente materiale TE a temperatura ambiente nonostante il valore zT superiore a 2 in vari materiali TE5. Diversi articoli pubblicati hanno studiato le proprietà TE di questo materiale, il che dimostra che la stechiometrica Bi2Te3 ha un coefficiente di Seebeck negativo 6,7,8, indicando proprietà di tipo n. Tuttavia, questo composto può essere adattato al tipo p e n legandosi rispettivamente con tellururo di antimonio (Sb2Te3) e seleniuro di bismuto (Bi2Se3), che possono aumentare la loro banda proibita e ridurre gli effetti bipolari9.

Il tellururo di antimonio, Sb2Te3 è un altro materiale TE ben consolidato con un'alta figura di merito a bassa temperatura. Mentre la stechiometrica Bi2Te3 è un'ottima TE con proprietà di tipo n, Sb2Te3 ha proprietà di tipo p. In alcuni casi, le proprietà dei materiali TE spesso dipendono dalla composizione atomica del materiale, come il tipo n Bi2Te3 ricco di Te, ma un Bi2Te3 di tipo p a causa di difetti dell'accettore dell'antisito BiTe 4. Tuttavia, Sb2Te3 è sempre di tipo p a causa dell'energia di formazione relativamente bassa dei difetti dell'antisito SbTe, anche in Sb2Te34 ricchi di Te. Pertanto, questi due materiali diventano candidati adatti per fabbricare il modulo p-n del generatore termoelettrico per varie applicazioni.

Gli attuali TEG convenzionali sono costituiti da lingotti a cubetti di semiconduttori di tipo n e di tipo p collegati verticalmente nella serie10. Sono stati utilizzati solo in campi di nicchia a causa della loro bassa efficienza e della loro natura ingombrante e rigida. Nel corso del tempo, i ricercatori hanno iniziato a esplorare le strutture a film sottile per migliorare le prestazioni e l'applicazione. È stato riferito che il TE a film sottile presenta vantaggi rispetto alla loro controparte ingombrante, come una maggiore zT a causa della loro bassa conduttività termica11,12, una minore quantità di materiale e una più facile integrazione con il circuito integrato12. Di conseguenza, la ricerca di nicchia TE sui dispositivi termoelettrici a film sottile è in aumento, beneficiando dei vantaggi della struttura dei nanomateriali 13,14.

La microfabbricazione di film sottili è importante per ottenere materiali TE ad alte prestazioni. A questo scopo sono stati studiati e sviluppati vari approcci di deposizione, tra cui la deposizione chimicada vapore 15, la deposizione di strati atomici16,17, la deposizione laser pulsata 18,19,20, la serigrafia 8,21 e l'epitassia a fascio molecolare22. Tuttavia, la maggior parte di queste tecniche soffre di costi operativi elevati, processi di crescita complessi o preparazione complicata del materiale. Al contrario, lo sputtering magnetron è un approccio conveniente per la produzione di film sottili di alta qualità che sono più densi, presentano una granulometria più piccola, hanno una migliore adesione e un'elevata uniformità 23,24,25.

Lo sputtering magnetron è uno dei processi di deposizione fisica da vapore (PVD) basati sul plasma, ampiamente utilizzati in varie applicazioni industriali. Il processo di sputtering funziona quando viene applicata una tensione sufficiente a un bersaglio (catodo), gli ioni del plasma a scarica incandescente bombardano il bersaglio e rilasciano non solo elettroni secondari, ma anche atomi dei materiali catodici che alla fine impattano sulla superficie del substrato e si condensano come un film sottile. Il processo di sputtering è stato commercializzato per la prima volta negli anni '30 e migliorato negli anni '60, guadagnando un notevole interesse grazie alla sua capacità di depositare un'ampia gamma di materiali utilizzando la corrente continua (DC) e lo sputtering RF26,27. Lo sputtering del magnetron supera il basso tasso di deposizione e l'elevato impatto del riscaldamento del substrato utilizzando il campo magnetico. Il potente magnete confina gli elettroni nel plasma in corrispondenza o vicino alla superficie del bersaglio e previene danni al film sottile formato. Questa configurazione preserva la stechiometria e l'uniformità di spessore del film sottile depositato28.

Anche la preparazione di film sottili termoelettrici Bi2Te3 e Sb2Te3 utilizzando il metodo dello sputtering magnetron è stata ampiamente studiata, incorporando tecniche come il drogaggio 4,29,30 e la ricottura 31 nelle procedure, portando a prestazioni e qualità diverse. Lo studio di Zheng et al.32 utilizza il metodo della diffusione indotta termicamente per diffondere gli strati Bi e Te drogati con Ag che sono stati polverizzati separatamente. Questo metodo consente un controllo preciso sulla composizione dei film sottili e la diffusione del Te mediante induzione termica protegge il Te dalla volatilizzazione. Le proprietà dei film sottili possono anche essere migliorate dal processo di pre-rivestimento33 prima dello sputtering, che si traduce in una migliore conduttività elettrica grazie all'elevata mobilità del vettore, aumentando di conseguenza il fattore di potenza. Oltre a questo, lo studio di Chen et al.34 ha migliorato le prestazioni termoelettriche di Bi2Te3 polverizzato drogando Se tramite il metodo della reazione di diffusione post-selenizzazione. Durante il processo, Se vaporizza e si diffonde nei film sottili Bi-Te per formare film Bi-Te-Se, il che si traduce in un fattore di potenza 8 volte superiore rispetto al Bi2Te3 non drogato.

Questo articolo descrive la nostra configurazione sperimentale e la procedura per la tecnica di sputtering del magnetron RF per depositare film sottili Bi2Te3 e Sb2Te3 su substrati di vetro. Lo sputtering è stato eseguito in una configurazione top-down come mostrato nel diagramma schematico in Figura 1, il catodo è stato montato ad angolo rispetto al substrato normale, portando a un plasma più concentrato e convergente al substrato. I film sono stati sistematicamente caratterizzati utilizzando FESEM, EDX, effetto Hall e misurazione del coefficiente di Seebeck per studiarne la morfologia superficiale, lo spessore, la composizione e le proprietà termoelettriche.

figure-introduction-8932
Figura 1: Schema dello sputtering della configurazione top-down. Il diagramma è stato progettato in base, ma non in scala, all'effettiva configurazione di sputtering disponibile per questo studio, inclusa la disposizione dei substrati di vetro da farfugliare visti dall'alto. Fare clic qui per visualizzare una versione più grande di questa figura.

Protocollo

1. Preparazione del substrato

  1. Pulire i substrati di vetro con un panno privo di lanugine per rimuovere lo sporco o i detriti. Lavare i substrati di vetro con acqua e sapone, utilizzare una spazzola per strofinare lo sporco sul vetro.
  2. Preparare tutti i solventi elencati di seguito in becher, immergere i substrati di vetro nel solvente e sonicare di conseguenza a 37 kHz. Preparare il metanolo a 80 °C per 10 min; acetone a 80 °C per 10 min, etanolo a 80 °C per 10 min, acqua distillata (DI) a 80 °C per 20 min.
    ATTENZIONE: Maneggiare sostanze chimiche altamente volatili in una cappa aspirante.
  3. Estrarre i substrati dal becher uno per uno usando una pinzetta, mettere su una superficie piana pulita, tenere premuto il substrato con una pinzetta e soffiare con azoto gassoso fino a quando non si asciuga.
  4. Mettere i substrati su una piastra calda a 120 °C per 5-10 minuti per vaporizzare eventuali residui. Mettere i substrati in un detergente UV-ozono per 10 minuti.

2. Metodo di sputtering

  1. Preparazione della camera
    1. Rimuovere lo scudo di alluminio dalla pistola e posizionare il materiale target al centro del coperchio. Avvitare saldamente il coperchio sul supporto del magnetron e riposizionare la schermatura in alluminio. Coprire il corpo della camera, le pistole e il portacampioni con un foglio di alluminio.
    2. Eseguire l'ispezione di cortocircuito toccando le sonde di un multimetro tra i corpi della camera (corto), seguito dal corpo della camera e dalla pistola (corto) e infine dal corpo della camera e dal bersaglio (aperto). Questo test è necessario per garantire che non vi siano dispersioni di corrente tra il corpo (anodo) e il bersaglio (catodo), che possono ostacolare la formazione di plasma.
  2. Pre-sputtering
    1. Chiudere lo sportello e aspirare la camera per 15 - 30 min. Premere insieme la porta e il corpo all'inizio dell'aspirazione per assicurarsi che la porta sia ben chiusa. Assicurarsi che la lettura del manometro stia diminuendo.
    2. Accendere il sistema di raffreddamento e impostare a 15 °C. Accendere la pompa e il pulsante di refrigerazione e aprire la valvola collegata allo strumento di sputtering.
      NOTA: Lo sputtering RF non funziona senza un sistema di raffreddamento. La formazione di plasma non avverrà.
    3. Impostare il flusso di argon su 4 sccm e accendere l'interruttore a levetta del gas. Attendere che il flusso raggiunga il valore impostato.
    4. Impostare la rotazione a 10 giri/min e accendere l'interruttore a levetta di rotazione. Premere il pulsante di accensione per accendere il controller di rete a corrispondenza automatica e l'alimentatore a radiofrequenza.
    5. Sul controller di rete a corrispondenza automatica, impostare il carico e la sintonizzazione su 50 W ciascuno premendo il pulsante Min/Max e premere il pulsante da Manuale ad Auto.
    6. Sull'alimentatore a radiofrequenza, impostare la potenza RF su 50 W e premere il pulsante Start . Impostare il timer su 15 min.
    7. Spegnere l'alimentazione RF e la rotazione. Impostare il flusso di argon su 0 e spegnere l'interruttore a levetta. Spegnere l'aspirapolvere.
      NOTA: Attendere che il flusso di argon raggiunga 0.1 sccm prima di spegnere l'aspirapolvere.
    8. Sfiatare per aprire la camera. Assicurarsi che la pompa turbomolecolare (TMP) sia spenta prima di sfiatare. Lo sfiato mentre il TMP è in funzione danneggerà il sistema.
    9. Aprire la camera e caricare i substrati. Posizionare i substrati nell'angolo esterno del portacampioni rotante per una migliore deposizione, come mostrato nella Figura 1.
      ATTENZIONE: Indossare maschera e guanti quando si maneggia l'interno della camera per evitare di inalare piccole particelle di materiali.
    10. Chiudere lo sportello come mostrato nella Figura 2 e aspirare per almeno 6 ore. Una pressione di base più bassa offre una migliore deposizione. La pressione di base ottimale per un sistema ad alto vuoto come il processo di sputtering è 1 x 10-5 Torr.
  3. Sputtering
    1. Accendere il sistema di raffreddamento e impostare a 15 °C. Accendere la pompa e il pulsante di refrigerazione e aprire la valvola collegata allo strumento di sputtering.
    2. Impostare la rotazione a 10 giri/min e accendere l'interruttore a levetta di rotazione. Impostare il flusso di argon su 4 sccm e accendere l'interruttore a levetta del gas. Attendere che il flusso raggiunga il valore impostato.
    3. Premere il pulsante di accensione per accendere il controller di rete a corrispondenza automatica e l'alimentatore a radiofrequenza.
    4. Sul controller di rete a corrispondenza automatica, impostare il carico e la sintonizzazione su 50 W ciascuno premendo il pulsante Min/Max e premere il pulsante da Manuale ad Auto.
    5. Sull'alimentatore a radiofrequenza, impostare la potenza RF su 50 W e premere il pulsante Start .
      NOTA: Attendere che il flusso di argon raggiunga il valore impostato e diventi stabile prima di accendere l'alimentazione RF.
    6. Verificare la presenza di plasma nella camera. La formazione di plasma è indicata da una luce viola incandescente nella camera. Se il plasma non è presente una volta attivata l'alimentazione RF, spegnere Argon per 10 s e riaccenderlo. Ripetere l'operazione fino a quando non si forma il plasma nella camera.
    7. Aumentare gradualmente la potenza RF di 5 W ogni intervallo di 10 s fino a raggiungere i 75 W. Impostare il timer su 60 min.
  4. Post-sputtering
    1. Spegnere l'alimentazione RF e la rotazione. Spegnere il controller di rete con corrispondenza automatica e l'alimentatore a radiofrequenza.
    2. Impostare il flusso di argon su 0 e spegnere l'interruttore a levetta del gas. Spegnere l'aspirapolvere.
      NOTA: Attendere che il flusso di Argon raggiunga 0.1 sccm prima di spegnere l'aspirapolvere.
    3. Sfiatare per aprire la camera. Assicurarsi che il TMP sia spento prima di sfiatare. Lo sfiato mentre il TMP è in funzione danneggerà il sistema.
    4. Prelevare tutti i campioni con una pinzetta e metterli in una capsula di Petri pulita.
      ATTENZIONE: Indossare maschera e guanti quando si maneggia l'interno della camera per evitare di inalare piccole particelle di materiali.
    5. Pulire la camera e aspirare per 10 - 15 minuti per mantenere la camera in condizioni di vuoto (priva di impurità).

figure-protocol-6895
Figura 2: Configurazione sperimentale. Fotografia della macchina per sputtering utilizzata in questo studio. Fare clic qui per visualizzare una versione più grande di questa figura.

3. Caratterizzazione

  1. Eseguire la scansione topografica e trasversale utilizzando il microscopio elettronico a scansione a emissione di campo (FESEM, con una tensione di esercizio di 3,0 kV) per ottenere i dettagli microstrutturali superficiali e lo spessore dei film polverizzati.
  2. Eseguire il calcolo sulla composizione dei film utilizzando i dati degli spettri di raggi X a dispersione di energia (EDX), allegati al FESEM. Misurare la tensione di Hall in un campo magnetico permanente di 0.57 T e le correnti di sonda di 0.8 mA e 10 mA per Sb2Te3 e Bi2Te3, rispettivamente per ottenere la concentrazione di portatori e la conducibilità dei film35.
  3. Eseguire la misura in piano del coefficiente di Seebeck utilizzando uno strumento simile utilizzato da Isotta et al.5. Montare i campioni con una geometria rettangolare di circa 2 cm x 1,25 cm sulla configurazione. Misurare il coefficiente di Seebeck assoluto in configurazione a 2 contatti rispetto a uno standard Pt, con un gradiente di temperatura di ≈25 °C.

Risultati

Le micrografie in sezione trasversale dei film sottili Bi2Te3 e Sb2Te3 depositati sono state registrate utilizzando FESEM, come mostrato rispettivamente nella Figura 3A e nella Figura 3B. La superficie complessiva del film appare uniforme e liscia. È evidente che i grani cristallini del film sottile Bi2Te3 erano esagonali, conformando la struttura cristallina di Bi2Te3 mentr...

Discussione

La tecnica presentata in questo documento non presenta difficoltà significative nell'impostazione e nell'implementazione dell'apparecchiatura. Tuttavia, è necessario evidenziare diversi passaggi critici. Come accennato nella fase 2.2.10 del protocollo, una condizione di vuoto ottimale è fondamentale per produrre film sottili di alta qualità con una minore contaminazione, poiché il vuoto rimuove l'ossigeno residuo nella camera37. La presenza di ossigeno può causare crepe nei film chiamate str...

Divulgazioni

Gli autori non hanno nulla da rivelare.

Riconoscimenti

Gli autori desiderano riconoscere il sostegno finanziario della sovvenzione di ricerca dell'Universiti Kebangsaan Malaysia: UKM-GGPM-2022-069 per svolgere questa ricerca.

Materiali

NameCompanyCatalog NumberComments
AcetoneChemiz (M) Sdn. Bhd.1910151Liquid, Flammable
Antimony Telluride, Sb2Te3China Rare Metal Material Co.,LtdC120222-0304Diameter 50.8 mm, Thickness 6.35 mm, 99.999% purity
Bismuth Telluride, Bi2Te3China Rare Metal Material Co.,LtdCB151208-0501Diameter 50.8 mm, Thickness 4.25 mm, 99.999% purity
EthanolChemiz (M) Sdn. Bhd.2007081Liquid, Flammable
Field Emission Scanning Electron MicroscopeZeissMERLINEquipped with EDX
Hall effect measurement systemAseptec Sdn. Bhd.HMS ECOPIA 3000-
Handheld digital multimeterProkits Industries Sdn. Bhd.303-150NCS-
HMS-3000Aseptec Sdn Bhd.HMS ECOPIA 3000Hall effect measurement software
Linseis_TALinseis Messgeräte GmbHLSR-3Linseis thermal analysis software
MethanolChemiz (M) Sdn. Bhd.2104071Liquid, Flammable
RF-DC magnetron sputteringKurt J. Lesker Company-Customized hybrid system
Seebeck coefficient measurement systemLinseis Messgeräte GmbHLSR-3-
SmartTiffCarl Zeiss Microscopy Ltd-SEM image thickness measurement software
Ultrasonic bathFisherbrandFB15055-
UV ozone cleanerOssila LtdL2002A3-UK-

Riferimenti

  1. Ochieng, A. O., Megahed, T. F., Ookawara, S., Hassan, H. Comprehensive review in waste heat recovery in different thermal energy-consuming processes using thermoelectric generators for electrical power generation. Proc Safety Environ Prot. 162, 134-154 (2022).
  2. Shilpa, M. K., et al. A systematic review of thermoelectric Peltier devices: Applications and limitations. Fluid Dyn Mater Proc. 19 (1), 187-206 (2022).
  3. Jiang, W., Huang, Y. . Thermoelectric technologies for harvesting energy from pavements. Eco-efficient Pavement Construction Materials. , (2020).
  4. Witting, I. T., et al. The thermoelectric properties of Bismuth telluride. Adv Elect Mater. 5 (6), 1-20 (2019).
  5. Isotta, E., et al. Towards low cost and sustainable thin film thermoelectric devices based on quaternary chalcogenides. Adv Funct Mater. 32 (32), 2202157 (2022).
  6. Yonezawa, S., Tabuchi, T., Takashiri, M. Atomic composition changes in bismuth telluride thin films by thermal annealing and estimation of their thermoelectric properties using experimental analyses and first-principles calculations. J Alloys Comp. 841, 155697 (2020).
  7. Fan, P., et al. High-performance bismuth telluride thermoelectric thin films fabricated by using the two-step single-source thermal evaporation. J Alloys Comp. 819, 153027 (2020).
  8. Amin, A., et al. Screen-printed bismuth telluride nanostructured composites for flexible thermoelectric applications. JPhys Energy. 4 (2), 024003 (2022).
  9. Witting, I. T., Ricci, F., Chasapis, T. C., Hautier, G., Snyder, G. J. The thermoelectric properties of n-type Bismuth telluride: Bismuth selenide alloys Bi2Te3−xSex. Research. 2020, 4361703 (2020).
  10. Shi, X. L., Zou, J., Chen, Z. G. Advanced thermoelectric design: From materials and structures to devices. Chem Rev. 120 (15), 7399 (2020).
  11. Ferrando-Villalba, P., et al. Measuring device and material ZT in a thin-film Si-based thermoelectric microgenerator. Nanomaterials. 9 (4), 653 (2019).
  12. Karthikeyan, V., et al. Wearable and flexible thin film thermoelectric module for multi-scale energy harvesting. J Power Sources. 455, 227983 (2020).
  13. Guo, X., He, Y. Mathematical modeling and optimization of platform service supply chains: A literature review. Mathematics. 10 (22), 4307 (2022).
  14. Syafiq, U., et al. Facile and low-cost fabrication of Cu/Zn/Sn-based ternary and quaternary chalcogenides thermoelectric generators. ACS Appl Ener Mater. 5 (5), 5909-5918 (2022).
  15. Newbrook, D. W., et al. Improved thermoelectric performance of Bi2Se3 alloyed Bi2Te3 thin films via low pressure chemical vapour deposition. J Alloys Comp. 848, 156523 (2020).
  16. Lim, S. S., et al. Carrier modulation in Bi2Te3-based alloys via interfacial doping with atomic layer deposition. Coatings. 10 (6), 1-8 (2020).
  17. Chen, X., Baumgart, H. Advances in atomic layer deposition (ALD) nanolaminate synthesis of thermoelectric films in porous templates for improved seebeck coefficient. Materials. 13 (6), 1-20 (2020).
  18. Darwish, A. M., et al. Thermoelectric properties of Al-doped ZnO composite films with polymer nanoparticles prepared by pulsed laser deposition. Composites Part B: Engineering. 167, 406-410 (2019).
  19. Symeou, E., Nicolaou, C., Kyratsi, T., Giapintzakis, J. Enhanced thermoelectric properties in vacuum-annealed Bi0.5Sb1.5Te3 thin films fabricated using pulsed laser deposition. J Appl Phys. 125 (21), 0 (2019).
  20. Wudil, Y. S., Gondal, M. A., Rao, S. G., Kunwar, S., Alsayoud, A. Q. Substrate temperature-dependent thermoelectric figure of merit of nanocrystalline Bi2Te3 and Bi2Te2.7Se0.3 prepared using pulsed laser deposition supported by DFT study. Ceramics Int. 46 (15), 24162-24172 (2020).
  21. Sousa, V., et al. High Seebeck coefficient from screen-printed colloidal PbSe nanocrystals thin film. Materials. 15 (24), 8805 (2022).
  22. Rao, D., et al. High mobility and high thermoelectric power factor in epitaxial ScN thin films deposited with plasma-assisted molecular beam epitaxy. Appl Phys Lett. 116 (15), 152103 (2020).
  23. Hu, B., et al. Advances in flexible thermoelectric materials and devices fabricated by magnetron sputtering. Small Sci. , 2300061 (2023).
  24. Gudmundsson, J. T. Physics and technology of magnetron sputtering discharges. Plasma Sources Science and Technology. 29 (11), 113001 (2020).
  25. Tani, J. I., Ishikawa, H. Thermoelectric properties of Mg2Sn thin films fabricated using radio frequency magnetron sputtering. Thin Solid Films. 692, 137601 (2019).
  26. Gudmundsson, J. T., Lundin, D. Introduction to magnetron sputtering. High Power Impulse Magnetron Sputtering. , 1-48 (2019).
  27. Hossain, E. S., et al. Fabrication of Cu2SnS3 thin film solar cells by sulphurization of sequentially sputtered Sn/CuSn metallic stacked precursors. Solar Energy. 177, 262-273 (2019).
  28. Maurya, D. K., Sardarinejad, A., Alameh, K. Recent developments in R.F. magnetron sputtered thin films for pH sensing applications-an overview. Coatings. 4 (4), 756-771 (2014).
  29. Ahmad, F., et al. Effect of doping and annealing on thermoelectric properties of Bismuth telluride thin films. J Electron Mater. 49 (7), 4195-4202 (2020).
  30. Zhou, Y., Li, L., Tan, Q., Li, J. F. Thermoelectric properties of Pb-doped bismuth telluride thin films deposited by magnetron sputtering. J Alloys Comp. 590, 362-367 (2014).
  31. Takayama, K., Takashiri, M. Multi-layered-stack thermoelectric generators using p-type Sb2Te3 and n-type Bi2Te3 thin films by radio-frequency magnetron sputtering. Vacuum. 144, 164-171 (2017).
  32. Zheng, Z. H., et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat Sustain. 6 (2), 180-191 (2023).
  33. Zhang, J., et al. Effects of Si Substrates with Variable Initial Orientations on the Growth and Thermoelectric Properties of Bi-Sb-Te Thin Films. Nanomaterials. 13 (2), 257 (2023).
  34. Chen, Y. X., et al. Realizing high thermoelectric performance in n-type Bi2Te3 based thin films via post-selenization diffusion. J Mater. 9 (4), 618-625 (2023).
  35. Zakaria, Z., et al. Effects of sulfurization temperature on Cu2ZnSnS4 thin film deposited by single source thermal evaporation method. Jpn J Appl Phys. 54, (2015).
  36. Amirghasemi, F., Kassegne, S. Effects of RF magnetron sputtering deposition power on crystallinity and thermoelectric properties of Antimony telluride and Bismuth telluride thin films on flexible substrates. J Electron Mater. 50 (4), 2190-2198 (2021).
  37. Baptista, A., et al. On the physical vapour deposition (PVD): Evolution of magnetron sputtering processes for industrial applications. Procedia Manu. 17, 746-757 (2018).
  38. Heu, R., Shahbazmohamadi, S., Yorston, J., Capeder, P. Target material selection for sputter coating of SEM samples. Microscopy Today. 27 (4), 32-36 (2019).
  39. Marquardt, N. . Introduction to the principles of vacuum physics. , 1-24 (1999).
  40. Ayachi Omar, A., Kashapov, N. F., Luchkin, A. G., Ayachi Amor, A., Ayachi Amar, A. Effect of cooling system design on the heat dissipation of the magnetron sensitive components with rectangular target during sputtering by Ar+. Results in Engineering. 16, 100696 (2022).
  41. Sharma, R., Sharma, S. Why sputtering target cracks. Zenodo. , (2020).
  42. Huang, P. C., et al. The effect of sputtering parameters on the film properties of molybdenum back contact for CIGS solar cells. Int J Photoener. 2013, 390824 (2013).
  43. Yin, Z., et al. Effect of sputtering process parameters on the uniformity of copper film deposited in micro-via. J Mater Res Technol. 25, 5249-5259 (2023).
  44. Ejaz, H., Hussain, S., Zahra, M., Saharan, Q. M., Ashiq, S. Several sputtering parameters affecting thin film deposition. J Appl Chem Sci Int. 13 (3), 41-49 (2022).
  45. Mandal, P., Singh, U. P., Roy, S. A review on the effects of PVD RF sputtering parameters on rare earth oxide thin films and their applications. IOP Conf. Ser: Mater Sci Eng. 1166 (1), 012022 (2021).
  46. Sahu, B. P., Sarangi, C. K., Mitra, R. Effect of Zr content on structure property relations of Ni-Zr alloy thin films with mixed nanocrystalline and amorphous structure. Thin Solid Films. 660, 31-45 (2018).
  47. Sahu, B. P., Dutta, A., Mitra, R. Influence of substrate bias voltage on structure and properties of DC magnetron sputtered Ni-Zr alloy thin films. J Mater Res. 35 (12), 1543-1555 (2020).
  48. Yaqub, T. B., Vuchkov, T., Sanguino, P., Polcar, T., Cavaleiro, A. Comparative study of DC and RF sputtered MoSe2 coatings containing carbon-An approach to optimize stoichiometry, microstructure,crystallinity and hardness. Coatings. 10 (2), 133 (2020).
  49. Kim, J., et al. Effect of IGZO thin films fabricated by Pulsed-DC and RF sputtering on TFT characteristics. Mater Sci Semicond Proc. 120, 105264 (2020).
  50. Panepinto, A., Snyders, R. Recent advances in the development of nano-sculpted films by magnetron sputtering for energy-related applications. Nanomaterials. 10 (10), 1-27 (2020).
  51. Lenis, J. A., Bejarano, G., Rico, P., Ribelles, J. L. G., Bolívar, F. J. Development of multilayer Hydroxyapatite - Ag/TiN-Ti coatings deposited by radio frequency magnetron sputtering with potential application in the biomedical field. Surf Coat Tech. 377, 124856 (2019).
  52. Wang, M., Chen, Y., Gao, B., Lei, H. Electrochromic properties of nanostructured WO3 thin films deposited by glancing-angle magnetron sputtering. Adv Electron Mater. 5 (5), 1-7 (2019).

Ristampe e Autorizzazioni

Richiedi autorizzazione per utilizzare il testo o le figure di questo articolo JoVE

Richiedi Autorizzazione

Esplora altri articoli

IngegneriaNumero 207

This article has been published

Video Coming Soon

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati