Accedi

Entropia

Panoramica

Fonte: Ketron Mitchell-Wynne, PhD, Asantha Cooray, PhD, Dipartimento di Fisica e Astronomia, Scuola di Scienze Fisiche, Università della California, Irvine, CA

La seconda legge della termodinamica è una legge fondamentale della natura. Afferma che l'entropia di un sistema aumenta sempre nel tempo o rimane costante nei casi ideali in cui un sistema è in uno stato stazionario o sta subendo un "processo reversibile". Se il sistema sta subendo un processo irreversibile, l'entropia del sistema aumenterà sempre. Ciò significa che la variazione di entropia, ΔS, è sempre maggiore o uguale a zero. L'entropia di un sistema è una misura del numero di configurazioni microscopiche che il sistema può raggiungere. Ad esempio, il gas in un contenitore con volume, pressione e temperatura noti può avere un numero enorme di possibili configurazioni delle singole molecole di gas. Se il contenitore viene aperto, le molecole di gas fuoriescono e il numero di configurazioni aumenta drammaticamente, essenzialmente avvicinandosi all'infinito. Quando il contenitore viene aperto, si dice che l'entropia aumenti. Pertanto, l'entropia può essere considerata una misura del "disordine" di un sistema.

Procedura

1. Installazione.

  1. Procuratevi un elemento riscaldante e un supporto, un termometro, un cronometro, alcuni asciugamani di carta, acqua e un grande becher.
  2. Riempire il becher con acqua sufficiente in modo che il campione non si raffreddi troppo rapidamente(cioè almeno 500 ml).
  3. Posizionare il becher pieno d'acqua sul supporto sotto l'elemento riscaldante e accenderlo.
  4. Una volta che il becher d'acqua raggiunge l'ebollizione, inserire il termometro e spegnere l'elemento riscald

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Risultati

I risultati rappresentativi per 680 ml di acqua sono riportati nella Tabella 1. La costante di raffreddamento k è stata trovata utilizzando i punti dati nella tabella e risolvendo l'equazione 7. Dopo 35 min, T(35) = 50,6. La temperatura iniziale era di 100 °C e la raccolta dei dati è cessata a 28,5 °C. Usando queste variabili si ottiene la seguente equazione per ottenere k:

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Tags
EntropyThermodynamicsHeat TransferDisorderIrreversible ProcessGas MoleculesContainerConfigurationsSecond Law Of ThermodynamicsChange In EntropyHot WaterRoom TemperatureCooling ExperimentsNewton s Law Of CoolingRate Of Temperature Change

Vai a...

0:05

Overview

1:17

Principles Behind a Cooling Experiment

3:33

The Cooling Experiment

4:29

Calculation and Results

6:06

Applications

7:07

Summary

Video da questa raccolta:

article

Now Playing

Entropia

Physics I

17.6K Visualizzazioni

article

I principi della dinamica (leggi di Newton)

Physics I

75.7K Visualizzazioni

article

Forza e accelerazione

Physics I

79.0K Visualizzazioni

article

Vettori in più direzioni

Physics I

182.3K Visualizzazioni

article

Cinematica e moto parabolico

Physics I

72.5K Visualizzazioni

article

Legge di gravitazione universale di Newton

Physics I

190.7K Visualizzazioni

article

Conservazione del momento angolare

Physics I

43.3K Visualizzazioni

article

Attrito

Physics I

52.9K Visualizzazioni

article

Legge di Hooke e moto armonico semplice

Physics I

61.3K Visualizzazioni

article

Diagrammi di equilibrio e corpo libero

Physics I

37.3K Visualizzazioni

article

Momento meccanico

Physics I

24.3K Visualizzazioni

article

Momento di inerzia

Physics I

43.5K Visualizzazioni

article

Momento angolare

Physics I

36.2K Visualizzazioni

article

Energia e lavoro

Physics I

49.7K Visualizzazioni

article

Entalpia

Physics I

60.4K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati