Accedi

Flusso cilindrico incrociato: misurazione della distribuzione della pressione e stima dei coefficienti di resistenza

Panoramica

Fonte: David Guo, College of Engineering, Technology, and Aeronautics (CETA), Southern New Hampshire University (SNHU), Manchester, New Hampshire

Le distribuzioni di pressione e le stime di resistenza per il flusso cilindrico incrociato sono state studiate per secoli. Secondo la teoria del flusso potenziale inviscido ideale, la distribuzione della pressione attorno a un cilindro è verticalmente simmetrica. Anche la distribuzione della pressione a monte e a valle del cilindro è simmetrica, il che si traduce in una forza di resistenza netta zero. Tuttavia, i risultati sperimentali producono modelli di flusso, distribuzioni di pressione e coefficienti di resistenza molto diversi. Questo perché la teoria del potenziale inviscido ideale presuppone un flusso irrotazionale, il che significa che la viscosità non viene considerata o presa in considerazione quando si determina il modello di flusso. Questo differisce significativamente dalla realtà.

In questa dimostrazione, una galleria del vento viene utilizzata per generare una velocità dell'aria specificata e un cilindro con 24 porte di pressione viene utilizzato per raccogliere i dati di distribuzione della pressione. Questa dimostrazione illustra come la pressione di un fluido reale che scorre attorno a un cilindro circolare differisca dai risultati previsti in base al flusso potenziale di un fluido idealizzato. Anche il coefficiente di resistenza aerodinamica sarà stimato e confrontato con il valore previsto.

Procedura

1. Misurare la distribuzione della pressione attorno a un cilindro

  1. Rimuovere il coperchio superiore della sezione di prova di una galleria del vento e montare un cilindro di alluminio pulito (d = 4 pollici) con 24 porte integrate su un giradischi (Figura 3). Installare il cilindro in modo che la porta zero sia rivolta a monte (Figura 4a).
  2. Sostituire il coperchio superiore e collegare i 24 tubi di pressione etichettati 0 - 23

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Risultati

I risultati sperimentali per il cilindro pulito e disturbato sono mostrati rispettivamente nelle tabelle 1 e 2. I dati possono essere tracciati in un grafico del coefficiente di pressione, Cp, contro posizione angolare, θ, per il flusso ideale e reale come mostrato in Figura 6.

Porta di p.

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Riferimenti
  1. d'Alembert, Jean le Rond (1752), Essai d'une nouvelle théorie de la résistance des fluides
  2. John D. Anderson (2017), Fundamentals of Aerodynamics, 6th Edition, ISBN: 978-1-259-12991-9, McGraw-Hill
  3. Prandtl, Ludwig (1904), Motion of fluids with very little viscosity, 452, NACA Technical Memorandum
Tags
Valore vuotoProblema

Vai a...

0:01

Concepts

3:01

Measuring the Pressure Distribution Around a Cylinder

5:11

Results

Video da questa raccolta:

article

Now Playing

Flusso cilindrico incrociato: misurazione della distribuzione della pressione e stima dei coefficienti di resistenza

Aeronautical Engineering

15.8K Visualizzazioni

article

Prestazioni aerodinamiche di un aeromodello: il DC-6B

Aeronautical Engineering

8.0K Visualizzazioni

article

Caratterizzazione dell'elica: variazioni di passo, diametro e numero di pale sulle prestazioni

Aeronautical Engineering

25.8K Visualizzazioni

article

Comportamento del profilo alare: distribuzione della pressione su un'ala Clark Y-14

Aeronautical Engineering

20.5K Visualizzazioni

article

Clark Y-14 Wing Performance: implementazione di dispositivi ad alto sollevamento (flap e lamelle)

Aeronautical Engineering

13.0K Visualizzazioni

article

Metodo della sfera di turbolenza: valutazione della qualità del flusso nella galleria del vento

Aeronautical Engineering

8.5K Visualizzazioni

article

Analisi degli ugelli: variazioni del numero di Mach e della pressione lungo un ugello convergente e un ugello convergente-divergente

Aeronautical Engineering

37.5K Visualizzazioni

article

Schlieren Imaging: una tecnica per visualizzare le caratteristiche del flusso supersonico

Aeronautical Engineering

10.5K Visualizzazioni

article

Visualizzazione del flusso in un tunnel d'acqua: osservazione del vortice di estremità su un'ala delta

Aeronautical Engineering

7.6K Visualizzazioni

article

Visualizzazione del flusso di colorante superficiale: un metodo qualitativo per osservare le linee di flusso nel flusso supersonico

Aeronautical Engineering

4.8K Visualizzazioni

article

Tubo Pitot-statico: un dispositivo per misurare la velocità del flusso d'aria

Aeronautical Engineering

47.9K Visualizzazioni

article

Anemometria a temperatura costante: uno strumento per studiare il flusso turbolento dello strato limite

Aeronautical Engineering

7.1K Visualizzazioni

article

Trasduttore di pressione: calibrazione mediante tubo statico Pitot

Aeronautical Engineering

8.4K Visualizzazioni

article

Controllo di volo in tempo reale: calibrazione del sensore incorporato e acquisizione dati

Aeronautical Engineering

9.9K Visualizzazioni

article

Aerodinamica multirotore: caratterizzazione della spinta su un esacottero

Aeronautical Engineering

9.0K Visualizzazioni

JoVE Logo

Riservatezza

Condizioni di utilizzo

Politiche

Ricerca

Didattica

CHI SIAMO

Copyright © 2025 MyJoVE Corporation. Tutti i diritti riservati