A novel approach is described for construction of electronic tongue (eT), which greatly simplifies the design and production of sensing materials, and allows the eT to generate continuous evolution profiles and landscapes for samples in liquid. The obtained eT is efficient for common protein analysis such as discrimination.
The determination of the solution structure of a protein by small angle X-ray scattering (SAXS) requires monodisperse samples. Here, we present two possibilities to ensure minimal delays between sample preparation and data acquisition: online size-exclusion chromatography (SEC) and online ion-exchange chromatography (IEC).
We present the use of the MeshAndCollect protocol to obtain a complete diffraction data set, for use in subsequent structure determination, composed of partial diffraction data sets collected from many small crystals of the fluorescent protein Cerulean.
Here, we describe how to use the automated screening and data collection options available at some synchrotron beamlines. Scientists send cryocooled samples to the synchrotron, and the diffraction properties are screened, the data sets are collected and processed and, where possible, a structure solution is carried out—all without human intervention.
SEC-BioSAXS measurements of biological macromolecules are a standard approach for determining solution structure of macromolecules and their complexes. Here, we analyze SEC-BioSAXS data from two types of commonly encountered SEC traces—chromatograms with fully resolved and partially resolved peaks. We demonstrate the analysis and deconvolution using scatter and BioXTAS RAW.
Here, we describe how to use the automated macromolecular crystallography pipelines for protein-to-structure, rapid ligand-protein complex analysis and large-scale fragment screening based on the CrystalDirect technology at the HTX Laboratory in EMBL Grenoble.
JoVEについて
Copyright © 2023 MyJoVE Corporation. All rights reserved