A technique combining in situ tetramer staining and in situ hybridization (ISTH) enables visualization, mapping and analysis of the spatial proximity of virus-specific CD8+ T cells to their virus-infected targets, and determination of the quantitative relationships between these immune effectors and targets to infection outcomes.
The study of liver sinusoidal endothelial cells (SECs) must be performed with primary cells obtained from the animal as no cell lines exist. This method relies on liver digestion and differential centrifugation for SEC purification for subsequent culturing and experimentation.
This study demonstrates the successful establishment of magnetic resonance microscopy imaging as a non-invasive tool to assess the cardiac abnormalities in mice affected with autoimmune myocarditis. The data indicate that the technique can be used to monitor the disease-progression in live animals.
The protocol to detect self-reactive CD4 T cells in brain and heart by direct staining with major histocompatibility complex class II dextramers has been described in this report. For comprehensive analysis, a reliable method to enumerate the frequencies of antigen-specific CD4+ T cells in situ is also devised.
The goal of this protocol is to obtain high viability and high yield of hepatocytes and sinusoidal endothelial cells from liver. This is accomplished by perfusing the liver with a type IV collagenase solution via the portal vein, followed by differential centrifugation to obtain hepatocytes and sinusoidal endothelial cells.
We describe a novel method for generating double humanized BLT-mice that feature a functional human immune system and a stable engrafted human-like gut microbiome. This protocol can be followed without the need for germ-free mice or gnotobiotic facilities.
Bovine colostrum is both a primary source of nutrients and immunological support for the newborn calf. The understanding of the level of therapeutic proteins (lactoferrin and IgG) is important for the bovine colostrum dosing and standardization for human consumption.
This protocol describes a patterned direct contact glioma-astrocyte co-culture utilizing micro-contact printing on polyelectrolyte multilayers (PEMs) to pattern U87 or A172 GBM cells and primary astrocytes.
JoVEについて
Copyright © 2023 MyJoVE Corporation. All rights reserved