サインイン

Gene transcription is regulated by the synergistic action of several proteins that form a complex at a gene regulatory site. This is observed in eukaryotes, where the regulation of gene expression is a complex process. Regulatory proteins in eukaryotes can broadly be classified into two types – regulators that bind directly to specific DNA sequences and co-regulators that associate with regulatory proteins but cannot directly bind to the DNA. These co-regulators are further divided into co-activators or co-repressors based on their function.

An individual co-regulator can function either as a co-activator or a co-repressor, depending on its role in its associated complex. For example, the transcriptional co-repressor G9a participates in the activation of gene expression for a steroid hormone receptor along with other co-activators, such as GRIP1 and CARM1. Distinct domains of the protein perform these varied functions. In addition to the role in the complex, these regulators have enzymatic activities that can help regulate gene expression through the remodeling of the chromatin structure.

Histone acetyltransferases and histone demethylases function as co-activators; however, they first need to be localized to the regulatory site by a transcription activator to be able to perform these functions. Histone acetyltransferases can acetylate the lysine residues on the histone tails. Acetylation uncoils the chromatin and promotes gene expression. On the other hand, histone deacetylases and histone methyltransferases function as co-repressors. Both these modifications lead to the tightening up of chromatin structure and thereby lead to the prevention of gene expression.

タグ
Co activatorsCo repressorsTranscription RegulationRegulatory ProteinsCo regulatorsCis regulatory SequencesDNA BindingTranscriptional RegulatorRNA MoleculesHistone AcetyltransferasesHistone DeacetylasesGene Expression RegulationAcetyl GroupsTight Packing Of DNACo regulator SMRTHormone Response Element

章から 10:

article

Now Playing

10.8 : Co-activators and Co-repressors

遺伝子発現

7.0K 閲覧数

article

10.1 : 細胞特異的遺伝子発現

遺伝子発現

13.1K 閲覧数

article

10.2 : 発現の調節は複数のステップで行われます

遺伝子発現

21.7K 閲覧数

article

10.3 : シス制御配列

遺伝子発現

9.4K 閲覧数

article

10.4 : 転写制御因子の協調的結合

遺伝子発現

6.1K 閲覧数

article

10.5 : 原核生物の転写活性化因子および抑制因子

遺伝子発現

20.0K 閲覧数

article

10.6 : オペロン

遺伝子発現

15.0K 閲覧数

article

10.7 : 真核生物プロモーター領域

遺伝子発現

15.8K 閲覧数

article

10.9 : 真核生物転写活性化剤

遺伝子発現

10.6K 閲覧数

article

10.10 : 真核生物転写阻害剤

遺伝子発現

9.6K 閲覧数

article

10.11 : コンビナトリアル遺伝子制御

遺伝子発現

8.0K 閲覧数

article

10.12 : 人工多能性幹細胞

遺伝子発現

3.4K 閲覧数

article

10.13 : 転写レギュレーターのマスター

遺伝子発現

6.6K 閲覧数

article

10.14 : エピジェネティックな制御

遺伝子発現

24.0K 閲覧数

article

10.15 : ゲノムインプリンティングと遺伝

遺伝子発現

32.3K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved