サインイン

The scalar multiplication of two vectors is known as the scalar or dot product. As the name indicates, the scalar product of two vectors results in a number, that is, a scalar quantity. Scalar products are used to define work and energy relations. For example, the work that a force (a vector) performs on an object while causing its displacement (a vector) is defined as a scalar product of the force vector with the displacement vector.

The scalar product of two vectors is obtained by multiplying their magnitudes with the cosine of the angle between them. In the definition of the dot product, the direction of the angle between the two vectors does not matter and can be measured from either of the two vectors. The scalar product of orthogonal vectors vanishes. Moreover, the dot product of two parallel vectors is the product of their magnitudes, and likewise, the dot product of two antiparallel vectors is also the product of their magnitudes. The scalar product of a vector with itself is the square of its magnitude.

In the Cartesian coordinate system, scalar products of the unit vector of an axis with other unit vectors of axes always vanish because these unit vectors are orthogonal. The scalar multiplication of two vectors is commutative and obeys distributive law. The scalar product of two different unit vectors of axes is zero, and the scalar product of unit vectors with themselves is one. The scalar product of two vectors is used to find the angle between the vectors.

This text is adapted from Openstax, University Physics Volume 1, Section 2.4: Products of Vectors.

タグ
Scalar ProductDot ProductVector MultiplicationVector AlgebraWorkEnergyCartesian Coordinate SystemUnit VectorsCommutativeDistributive LawAngle Between Vectors

章から 2:

article

Now Playing

2.8 : Scalar Product (Dot Product)

ベクトルとスカラー

8.0K 閲覧数

article

2.1 : スカラーの概要

ベクトルとスカラー

13.7K 閲覧数

article

2.2 : ベクトルの紹介

ベクトルとスカラー

13.4K 閲覧数

article

2.3 : デカルト座標系のベクトル成分

ベクトルとスカラー

18.0K 閲覧数

article

2.4 : 極座標と円筒座標

ベクトルとスカラー

14.1K 閲覧数

article

2.5 : 球面座標

ベクトルとスカラー

9.7K 閲覧数

article

2.6 : ベクトル代数:グラフィカルな方法

ベクトルとスカラー

11.3K 閲覧数

article

2.7 : ベクトル代数:成分の方法

ベクトルとスカラー

13.3K 閲覧数

article

2.9 : ベクトル積 (外積)

ベクトルとスカラー

9.2K 閲覧数

article

2.10 : スカラーとベクトルのトリプル積

ベクトルとスカラー

2.2K 閲覧数

article

2.11 : グラデーションと del 演算子

ベクトルとスカラー

2.4K 閲覧数

article

2.12 : ダイバージェンスとカール

ベクトルとスカラー

1.6K 閲覧数

article

2.13 : 2次導関数とラプラス演算子

ベクトルとスカラー

1.1K 閲覧数

article

2.14 : ライン、サーフェス、およびボリューム積分

ベクトルとスカラー

2.1K 閲覧数

article

2.15 : 発散とストークスの定理

ベクトルとスカラー

1.4K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved