Zaloguj się

The scalar multiplication of two vectors is known as the scalar or dot product. As the name indicates, the scalar product of two vectors results in a number, that is, a scalar quantity. Scalar products are used to define work and energy relations. For example, the work that a force (a vector) performs on an object while causing its displacement (a vector) is defined as a scalar product of the force vector with the displacement vector.

The scalar product of two vectors is obtained by multiplying their magnitudes with the cosine of the angle between them. In the definition of the dot product, the direction of the angle between the two vectors does not matter and can be measured from either of the two vectors. The scalar product of orthogonal vectors vanishes. Moreover, the dot product of two parallel vectors is the product of their magnitudes, and likewise, the dot product of two antiparallel vectors is also the product of their magnitudes. The scalar product of a vector with itself is the square of its magnitude.

In the Cartesian coordinate system, scalar products of the unit vector of an axis with other unit vectors of axes always vanish because these unit vectors are orthogonal. The scalar multiplication of two vectors is commutative and obeys distributive law. The scalar product of two different unit vectors of axes is zero, and the scalar product of unit vectors with themselves is one. The scalar product of two vectors is used to find the angle between the vectors.

This text is adapted from Openstax, University Physics Volume 1, Section 2.4: Products of Vectors.

Tagi
Scalar ProductDot ProductVector MultiplicationVector AlgebraWorkEnergyCartesian Coordinate SystemUnit VectorsCommutativeDistributive LawAngle Between Vectors

Z rozdziału 2:

article

Now Playing

2.8 : Scalar Product (Dot Product)

Vectors and Scalars

8.0K Wyświetleń

article

2.1 : Wprowadzenie do skalarów

Vectors and Scalars

13.7K Wyświetleń

article

2.2 : Wprowadzenie do wektorów

Vectors and Scalars

13.4K Wyświetleń

article

2.3 : Składowe wektorowe w kartezjańskim układzie współrzędnych

Vectors and Scalars

18.0K Wyświetleń

article

2.4 : Współrzędne biegunowe i cylindryczne

Vectors and Scalars

14.1K Wyświetleń

article

2.5 : Współrzędne sferyczne

Vectors and Scalars

9.7K Wyświetleń

article

2.6 : Algebra wektorowa: metoda graficzna

Vectors and Scalars

11.3K Wyświetleń

article

2.7 : Algebra wektorowa: metoda składników

Vectors and Scalars

13.3K Wyświetleń

article

2.9 : Iloczyn wektorowy (iloczyn wektorowy)

Vectors and Scalars

9.2K Wyświetleń

article

2.10 : Potrójne iloczyny skalarne i wektorowe

Vectors and Scalars

2.2K Wyświetleń

article

2.11 : Operator gradientu i del

Vectors and Scalars

2.4K Wyświetleń

article

2.12 : Rozbieżność i zawijanie

Vectors and Scalars

1.6K Wyświetleń

article

2.13 : Drugie instrumenty pochodne i operator Laplace'a

Vectors and Scalars

1.1K Wyświetleń

article

2.14 : Całki liniowe, powierzchniowe i objętościowe

Vectors and Scalars

2.1K Wyświetleń

article

2.15 : Rozbieżność i twierdzenia Stokesa

Vectors and Scalars

1.4K Wyświetleń

JoVE Logo

Prywatność

Warunki Korzystania

Zasady

Badania

Edukacja

O JoVE

Copyright © 2025 MyJoVE Corporation. Wszelkie prawa zastrzeżone