サインイン

The dynamics of a mechanical system can be easily understood by interpreting a potential energy diagram. Since energy is a scalar quantity, the interpretation of the dynamics of the system becomes even simpler.

Take the example of a skater on a parabolic ramp. The potential energy at different points along the ramp will be proportional to the height of the ramp, which varies quadratically with the horizontal position on the ramp. As the skater moves down the ramp from the highest position, their potential energy converts to kinetic energy. The net force acting on the skater is gravitational force; therefore, the total mechanical energy of the skater is constant and conserved. At any given position on the ramp, the sum of the potential energy and the kinetic energy will be the total mechanical energy of the skater.

The skater oscillates between two points, which are symmetric about the bottom of the ramp. At these two positions, the potential energies are equal, and this is the total mechanical energy of the skater, with the kinetic energy being zero. These positions are called ‘returning points’ because the skater will always move towards the bottom of the ramp from these positions. The bottom of the ramp is a position where the potential energy is zero, and the kinetic energy is equal to the total mechanical energy of the skater. This position is called the equilibrium position.

This text is adapted from Openstax, University Physics Volume 1, Section 8.4: Potential Energy Diagrams and Stability.

タグ

Energy DiagramsPotential EnergyKinetic EnergyMechanical EnergySkater On Parabolic RampEquilibrium PositionReturning Points

章から 8:

article

Now Playing

8.11 : Energy Diagrams - I

位置エネルギーとエネルギー保存

4.8K 閲覧数

article

8.1 : 重力ポテンシャルエネルギー

位置エネルギーとエネルギー保存

15.3K 閲覧数

article

8.2 : 弾性ポテンシャルエネルギー

位置エネルギーとエネルギー保存

15.6K 閲覧数

article

8.3 : 機械エネルギーの保存

位置エネルギーとエネルギー保存

13.4K 閲覧数

article

8.4 : 外力によってシステム上で行われる作業

位置エネルギーとエネルギー保存

1.9K 閲覧数

article

8.5 : 保守勢力

位置エネルギーとエネルギー保存

11.6K 閲覧数

article

8.6 : 非保守的な勢力

位置エネルギーとエネルギー保存

7.2K 閲覧数

article

8.7 : エネルギー保存

位置エネルギーとエネルギー保存

8.5K 閲覧数

article

8.8 : エネルギー保存:応用

位置エネルギーとエネルギー保存

6.2K 閲覧数

article

8.9 : 1次元の力と位置エネルギー

位置エネルギーとエネルギー保存

5.2K 閲覧数

article

8.10 : 3次元の力と位置エネルギー

位置エネルギーとエネルギー保存

4.8K 閲覧数

article

8.12 : エネルギー図 - II

位置エネルギーとエネルギー保存

4.5K 閲覧数

JoVE Logo

個人情報保護方針

利用規約

一般データ保護規則

研究

教育

JoVEについて

Copyright © 2023 MyJoVE Corporation. All rights reserved